Exemplo n.º 1
0
# xx = sm.add_constant(x, prepend=True)
xx = sm.add_constant(x, prepend=False)  # for Stata compatibility

# remove nan observation
mask = (xx != -999.0).all(1)  # nan code in dta file
mask.shape
y = y[mask]
xx = xx[mask]
group = group[mask]

res_srs = sm.OLS(y, xx).fit()
print res_srs.params
print res_srs.bse

bse_cr = sw.cov_cluster(res_srs, group.astype(int))[1]
print bse_cr

res_stata = np.rec.array(
    [
        (
            "growth",
            "|",
            -0.1027121,
            0.22917029999999999,
            -0.45000000000000001,
            0.65500000000000003,
            -0.55483519999999997,
            0.34941109999999997,
        ),
        ("emer", "|", -5.4449319999999997, 0.72939690000000001, -7.46, 0.0, -6.8839379999999997, -4.0059269999999998),
Exemplo n.º 2
0
    #res.resid is of transformed model
    #np.corrcoef(res.resid.reshape(-1,n_groups, order='F'))
    y_pred = np.dot(mod.exog, res.params)
    resid = y - y_pred
    print np.corrcoef(resid.reshape(-1,n_groups, order='F'))
    print resid.std()
    err = y_pred - dgp.y_true
    print err.std()
    #OLS standard errors are too small
    mod.res_pooled.params
    mod.res_pooled.bse
    #heteroscedasticity robust doesn't help
    mod.res_pooled.HC1_se
    #compare with cluster robust se
    import scikits.statsmodels.sandbox.panel.sandwich_covariance as sw
    print sw.cov_cluster(mod.res_pooled, dgp.groups.astype(int))[1]
    #not bad, pretty close to panel estimator
    #and with Newey-West Hac
    print sw.se_cov(sw.cov_nw_panel(mod.res_pooled, 5, mod.group.groupidx))
    #too small, assuming no bugs,
    #see Peterson assuming it refers to same kind of model
    print dgp.cov

    mod2 = ShortPanelGLS(y, dgp.exog, dgp.groups)
    res2 = mod2.fit_iterative(2)
    print res2.params
    print res2.bse
    #both implementations produce the same results:
    from numpy.testing import assert_almost_equal
    assert_almost_equal(res.params, res2.params, decimal=14)
    assert_almost_equal(res.bse, res2.bse, decimal=14)
Exemplo n.º 3
0
#test White
assert_almost_equal(bse_w, self.HC0_se, 15)

bse_wc = sw.cov_white_simple(self, use_correction=True)[1]
print bse_wc
#test White
assert_almost_equal(bse_wc, self.HC1_se, 15)


groups = np.repeat(np.arange(5), 20)

idx = np.nonzero(np.diff(groups))[0].tolist()
groupidx = zip([0]+idx, idx+[len(groups)])
ngroups = len(groupidx)

print sw.cov_cluster(self, groups)[1]
#two strange looking corner cases BUG?
print sw.cov_cluster(self, np.ones(len(endog), int), use_correction=False)[1]
print sw.cov_crosssection_0(self, np.arange(len(endog)))[1]
#these results are close to simple (no group) white, 50 groups 2 obs each
groups = np.repeat(np.arange(50), 100//50)
print sw.cov_cluster(self, groups)[1]
#2 groups with 50 obs each, what was the interpretation again?
groups = np.repeat(np.arange(2), 100//2)
print sw.cov_cluster(self, groups)[1]

"http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.txt"
'''
test <- read.table(
      url(paste("http://www.kellogg.northwestern.edu/",
            "faculty/petersen/htm/papers/se/",