Exemplo n.º 1
0
def test_linlogspace_linear_log_linear():
    q_linloglin = tools.linlogspace(dim='qz',
                                    edges=[0.008, 0.03, 0.08, 0.12],
                                    unit='1/angstrom',
                                    scale=['linear', 'log', 'linear'],
                                    num=[16, 20, 10])
    exp_lin = sc.linspace(dim='qz', start=0.008, stop=0.03, num=16, unit='1/angstrom')
    exp_log = sc.geomspace(dim='qz', start=0.03, stop=0.08, num=21, unit='1/angstrom')
    exp_lin2 = sc.linspace(dim='qz', start=0.08, stop=0.12, num=11, unit='1/angstrom')
    expected = sc.concat([exp_lin, exp_log['qz', 1:], exp_lin2['qz', 1:]], 'qz')
    assert sc.allclose(q_linloglin, expected)
Exemplo n.º 2
0
def params():
    dim = 'frame'
    return {
        'frequency':
        sc.scalar(56.0, unit="Hz"),
        'phase':
        sc.scalar(0.5, unit='rad'),
        'position':
        sc.vector(value=[0., 0., 5.], unit='m'),
        'cutout_angles_center':
        sc.linspace(dim=dim, start=0.25, stop=2.0 * np.pi, num=6, unit='rad'),
        'cutout_angles_width':
        sc.linspace(dim=dim, start=0.1, stop=0.6, num=6, unit='rad'),
        'kind':
        sc.scalar('wfm')
    }
def test_mantid_convert_tof_to_direct_energy_transfer():
    efixed = 1000 * sc.Unit('meV')
    in_ws = make_workspace('tof', emode='Direct', efixed=efixed)
    out_mantid = mantid_convert_units(in_ws,
                                      'energy_transfer',
                                      emode='Direct',
                                      efixed=efixed)

    in_da = scn.mantid.from_mantid(in_ws)
    out_scipp = scn.convert(data=in_da,
                            origin='tof',
                            target='energy_transfer',
                            scatter=True)

    # The conversion consists of multiplications and additions, thus the relative error
    # changes with the inputs. In this case, small tof yields a large error due to
    # the 1/tof**2 factor in the conversion.
    # rtol is chosen to account for linearly changing tof in the input data.
    assert sc.allclose(
        out_scipp.coords['energy_transfer'],
        out_mantid.coords['energy_transfer'],
        rtol=sc.linspace(
            'energy_transfer', 1e-6, 1e-10,
            out_scipp.coords['energy_transfer'].sizes['energy_transfer']))
    assert sc.identical(out_scipp.coords['spectrum'],
                        out_mantid.coords['spectrum'])
Exemplo n.º 4
0
def test_basic_stitching():
    frames = sc.Dataset()
    shift = -5.0
    frames['time_min'] = sc.array(dims=['frame'],
                                  values=[0.0],
                                  unit=sc.units.us)
    frames['time_max'] = sc.array(dims=['frame'],
                                  values=[10.0],
                                  unit=sc.units.us)
    frames['time_correction'] = sc.array(dims=['frame'],
                                         values=[shift],
                                         unit=sc.units.us)
    frames["wfm_chopper_mid_point"] = sc.vector(value=[0., 0., 2.0], unit='m')

    data = sc.DataArray(data=sc.ones(dims=['t'],
                                     shape=[100],
                                     unit=sc.units.counts),
                        coords={
                            't':
                            sc.linspace(dim='t',
                                        start=0.0,
                                        stop=10.0,
                                        num=101,
                                        unit=sc.units.us),
                            'source_position':
                            sc.vector(value=[0., 0., 0.], unit='m')
                        })

    nbins = 10
    stitched = wfm.stitch(data=data, dim='t', frames=frames, bins=nbins)
    # Note dimension change to TOF as well as shift
    assert sc.identical(
        sc.values(stitched),
        sc.DataArray(
            data=sc.ones(dims=['tof'], shape=[nbins], unit=sc.units.counts) *
            nbins,
            coords={
                'tof':
                sc.linspace(dim='tof',
                            start=0.0 - shift,
                            stop=10.0 - shift,
                            num=nbins + 1,
                            unit=sc.units.us),
                'source_position':
                sc.vector(value=[0., 0., 2.], unit='m')
            }))
Exemplo n.º 5
0
def test_linlogspace_linear():
    q_lin = tools.linlogspace(dim='qz',
                              edges=[0.008, 0.08],
                              scale='linear',
                              num=50,
                              unit='1/angstrom')
    expected = sc.linspace(dim='qz', start=0.008, stop=0.08, num=50, unit='1/angstrom')
    assert sc.allclose(q_lin, expected)
Exemplo n.º 6
0
Arquivo: plot.py Projeto: scipp/ess
def _bin_event_data_for_ploting(data, frame, bins_per_frame):
    """
    Bin event data using `bins_per_frame` to make a meaningful plot.
    """
    return sc.bin(data,
                  edges=[
                      sc.linspace(dim='tof',
                                  start=frame["time_min"].value,
                                  stop=frame["time_max"].value,
                                  num=bins_per_frame,
                                  unit=frame['time_min'].unit)
                  ]).bins.sum()
Exemplo n.º 7
0
def test_cutout_angles_from_begin_end(params):
    dim = 'frame'
    del params['cutout_angles_center']
    del params['cutout_angles_width']
    params["cutout_angles_begin"] = sc.linspace(dim=dim,
                                                start=0.0,
                                                stop=1.5 * np.pi,
                                                num=6,
                                                unit='rad')
    params["cutout_angles_end"] = sc.linspace(dim=dim,
                                              start=0.1,
                                              stop=2.0 * np.pi,
                                              num=6,
                                              unit='rad')
    chopper = ch.make_chopper(**params)
    assert sc.allclose(
        ch.cutout_angles_width(chopper),
        params["cutout_angles_end"] - params["cutout_angles_begin"])
    assert sc.allclose(
        ch.cutout_angles_center(chopper),
        0.5 * (params["cutout_angles_begin"] + params["cutout_angles_end"]))
Exemplo n.º 8
0
Arquivo: stitch.py Projeto: scipp/ess
def _stitch_dense_data(
        item: sc.DataArray, frames: sc.Dataset, dim: str, new_dim: str,
        bins: Union[int, sc.Variable]) -> Union[sc.DataArray, dict]:

    # Make empty data container
    if isinstance(bins, int):
        new_coord = sc.linspace(
            dim=new_dim,
            start=(frames["time_min"]["frame", 0] -
                   frames["time_correction"]["frame", 0]).value,
            stop=(frames["time_max"]["frame", -1] -
                  frames["time_correction"]["frame", -1]).value,
            num=bins + 1,
            unit=frames["time_min"].unit,
        )
    else:
        new_coord = bins

    dims = []
    shape = []
    for dim_ in item.dims:
        if dim_ != dim:
            dims.append(dim_)
            shape.append(item.sizes[dim_])
        else:
            dims.append(new_dim)
            shape.append(new_coord.sizes[new_dim] - 1)

    out = sc.DataArray(data=sc.zeros(dims=dims,
                                     shape=shape,
                                     with_variances=item.variances is not None,
                                     unit=item.unit),
                       coords={new_dim: new_coord})
    for group in ["coords", "attrs"]:
        for key in getattr(item, group):
            if key != dim:
                getattr(out, group)[key] = getattr(item, group)[key].copy()

    for i in range(frames.sizes["frame"]):
        section = item[dim, frames["time_min"].data[
            "frame", i]:frames["time_max"].data["frame",
                                                i]].rename_dims({dim: new_dim})
        section.coords[new_dim] = section.coords[dim] - frames[
            "time_correction"].data["frame", i]
        if new_dim != dim:
            del section.coords[dim]

        out += sc.rebin(section, new_dim, out.coords[new_dim])

    return out
Exemplo n.º 9
0
def _do_stitching_on_beamline(wavelengths, dim, event_mode=False):
    # Make beamline parameters for 6 frames
    coords = wfm.make_fake_beamline(nframes=6)

    # They are all created half-way through the pulse.
    # Compute their arrival time at the detector.
    alpha = sc.to_unit(constants.m_n / constants.h, 's/m/angstrom')
    dz = sc.norm(coords['position'] - coords['source_position'])
    arrival_times = sc.to_unit(alpha * dz * wavelengths,
                               'us') + coords['source_pulse_t_0'] + (
                                   0.5 * coords['source_pulse_length'])
    coords[dim] = arrival_times

    # Make a data array that contains the beamline and the time coordinate
    tmin = sc.min(arrival_times)
    tmax = sc.max(arrival_times)
    dt = 0.1 * (tmax - tmin)

    if event_mode:
        num = 2
    else:
        num = 2001
    time_binning = sc.linspace(dim=dim,
                               start=(tmin - dt).value,
                               stop=(tmax + dt).value,
                               num=num,
                               unit=dt.unit)
    events = sc.DataArray(data=sc.ones(dims=['event'],
                                       shape=arrival_times.shape,
                                       unit=sc.units.counts,
                                       with_variances=True),
                          coords=coords)
    if event_mode:
        da = sc.bin(events, edges=[time_binning])
    else:
        da = sc.histogram(events, bins=time_binning)

    # Find location of frames
    frames = wfm.get_frames(da)

    stitched = wfm.stitch(frames=frames, data=da, dim=dim, bins=2001)

    wav = scn.convert(stitched,
                      origin='tof',
                      target='wavelength',
                      scatter=False)
    if event_mode:
        out = wav
    else:
        out = sc.rebin(wav,
                       dim='wavelength',
                       bins=sc.linspace(dim='wavelength',
                                        start=1.0,
                                        stop=10.0,
                                        num=1001,
                                        unit='angstrom'))

    choppers = {key: da.meta[key].value for key in ch.find_chopper_keys(da)}
    # Distance between WFM choppers
    dz_wfm = sc.norm(choppers["chopper_wfm_2"]["position"].data -
                     choppers["chopper_wfm_1"]["position"].data)
    # Delta_lambda  / lambda
    dlambda_over_lambda = dz_wfm / sc.norm(
        coords['position'] - frames['wfm_chopper_mid_point'].data)

    return out, dlambda_over_lambda