Exemplo n.º 1
0
def idst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
    """
    Return the Inverse Discrete Sine Transform of an arbitrary type sequence.

    Parameters
    ----------
    x : array_like
        The input array.
    type : {1, 2, 3, 4}, optional
        Type of the DST (see Notes). Default type is 2.
    n : int, optional
        Length of the transform.  If ``n < x.shape[axis]``, `x` is
        truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
        default results in ``n = x.shape[axis]``.
    axis : int, optional
        Axis along which the idst is computed; the default is over the
        last axis (i.e., ``axis=-1``).
    norm : {None, 'ortho'}, optional
        Normalization mode (see Notes). Default is None.
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    idst : ndarray of real
        The transformed input array.

    See Also
    --------
    dst : Forward DST

    Notes
    -----
    'The' IDST is the IDST of type 2, which is the same as DST of type 3.

    IDST of type 1 is the DST of type 1, IDST of type 2 is the DST of type
    3, and IDST of type 3 is the DST of type 2. For the definition of these
    types, see `dst`.

    .. versionadded:: 0.11.0

    """
    type = _inverse_typemap[type]
    return _pocketfft.dst(x, type, n, axis, norm, overwrite_x)
Exemplo n.º 2
0
def dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
    r"""
    Return the Discrete Sine Transform of arbitrary type sequence x.

    Parameters
    ----------
    x : array_like
        The input array.
    type : {1, 2, 3, 4}, optional
        Type of the DST (see Notes). Default type is 2.
    n : int, optional
        Length of the transform.  If ``n < x.shape[axis]``, `x` is
        truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
        default results in ``n = x.shape[axis]``.
    axis : int, optional
        Axis along which the dst is computed; the default is over the
        last axis (i.e., ``axis=-1``).
    norm : {None, 'ortho'}, optional
        Normalization mode (see Notes). Default is None.
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    dst : ndarray of reals
        The transformed input array.

    See Also
    --------
    idst : Inverse DST

    Notes
    -----
    For a single dimension array ``x``.

    There are theoretically 8 types of the DST for different combinations of
    even/odd boundary conditions and boundary off sets [1]_, only the first
    4 types are implemented in scipy.

    **Type I**

    There are several definitions of the DST-I; we use the following
    for ``norm=None``. DST-I assumes the input is odd around `n=-1` and `n=N`.

    .. math::

        y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(n+1)}{N+1}\right)

    Note that the DST-I is only supported for input size > 1.
    The (unnormalized) DST-I is its own inverse, up to a factor `2(N+1)`.
    The orthonormalized DST-I is exactly its own inverse.

    **Type II**

    There are several definitions of the DST-II; we use the following for
    ``norm=None``. DST-II assumes the input is odd around `n=-1/2` and
    `n=N-1/2`; the output is odd around :math:`k=-1` and even around `k=N-1`

    .. math::

        y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(2n+1)}{2N}\right)

    if ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``

    .. math::

        f = \begin{cases}
        \sqrt{\frac{1}{4N}} & \text{if }k = 0, \\
        \sqrt{\frac{1}{2N}} & \text{otherwise} \end{cases}

    **Type III**

    There are several definitions of the DST-III, we use the following (for
    ``norm=None``). DST-III assumes the input is odd around `n=-1` and even
    around `n=N-1`

    .. math::

        y_k = (-1)^k x_{N-1} + 2 \sum_{n=0}^{N-2} x_n \sin\left(
        \frac{\pi(2k+1)(n+1)}{2N}\right)

    The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up
    to a factor `2N`. The orthonormalized DST-III is exactly the inverse of the
    orthonormalized DST-II.

    .. versionadded:: 0.11.0

    **Type IV**

    There are several definitions of the DST-IV, we use the following (for
    ``norm=None``). DST-IV assumes the input is odd around `n=-0.5` and even
    around `n=N-0.5`

    .. math::

        y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(2k+1)(2n+1)}{4N}\right)

    The (unnormalized) DST-IV is its own inverse, up to a factor `2N`. The
    orthonormalized DST-IV is exactly its own inverse.

    .. versionadded:: 1.2.0
       Support for DST-IV.

    References
    ----------
    .. [1] Wikipedia, "Discrete sine transform",
           https://en.wikipedia.org/wiki/Discrete_sine_transform

    """
    return _pocketfft.dst(x, type, n, axis, norm, overwrite_x)