Exemplo n.º 1
0
def fst(nx,ny,dx,dy,f):
    data = f[1:-1,1:-1]
        
#    e = dst(data, type=2)
#    data = dst(data, axis = 1, type = 1)
#    data = dst(data, axis = 0, type = 1)
    
    data = dstn(data, type = 1)
#    data = dstn(data, axis = 0, type = 1)
    
    m = np.linspace(1,nx-1,nx-1).reshape([-1,1])
    n = np.linspace(1,ny-1,ny-1).reshape([1,-1])
    
    data1 = np.zeros((nx-1,ny-1))
    
#    for i in range(1,nx):
#        for j in range(1,ny):
    alpha = (2.0/(dx*dx))*(np.cos(np.pi*m/nx) - 1.0) + (2.0/(dy*dy))*(np.cos(np.pi*n/ny) - 1.0)           
    data1 = data/alpha
    
#    u = idst(data1, type=2)/((2.0*nx)*(2.0*ny))
#    data1 = idst(data1, axis = 1, type = 1)
#    data1 = idst(data1, axis = 0, type = 1)
    
    data1 = idstn(data1,  type = 1)
#    data1 = idstn(data1, axis = 0, type = 1)
    
    u = data1/((2.0*nx)*(2.0*ny))
    
    ue = np.zeros((nx+1,ny+1))
    ue[1:-1,1:-1] = u
    
    return ue
Exemplo n.º 2
0
def random_initial_data(N, s):
    '''A function generating a random function on $[0,1]\times [0,1]$ with zero
    boundary conditions ampled from the random Fourier series
    $$\sum\limits_{n,m\geq 1}^N \frac{g_{nm}(\omega)}{\langle (n,m)\rangle^s}$$
    
    Parameters
    ----------------------
    N = The Fourier truncation parameter
    s = The regularity of the random data
    
    Returns
    ---------------------
    f =  a random Fourier series as described above.
    '''
    n = np.arange(1, N - 1)
    n = np.tile(n, (N - 2, 1)) + 0j
    m = np.arange(1, N - 1)
    m = np.tile(m, (N - 2, 1)).transpose() + 0j

    Ff = (np.random.randn(N - 2, N - 2) +
          np.complex(0, 1) * np.random.randn(N - 2, N - 2)) / (
              (n**2 + m**2 + 1)**(s / 2))
    f = fft.idstn(Ff, type=1, norm='ortho')

    f = np.pad(f, 1, mode='constant')
    f = np.real(f)

    return f
Exemplo n.º 3
0
 def BeamFFTxyInv(self, mpWeighGridOnZ):
     mpWeighGridOnZ = idstn(mpWeighGridOnZ,
                            axes=[0, 1],
                            type=1,
                            overwrite_x=True)
     mpWeighGridOnZ /= ((2. * (self.weighDeltaX + 1.)) *
                        (2. * (self.weighDeltaY + 1.)))
     return mpWeighGridOnZ
Exemplo n.º 4
0
def nbFFT(data):
    
    data=dstn(data,axes=[0,1],type=1,overwrite_x=True)
    data=fft(data,axis=-1,overwrite_x=True)

    data=ifft(data,axis=-1,overwrite_x=True)
    data=idstn(data,axes=[0,1],type=1,overwrite_x=True)
    data/=4*(num+1)**2
Exemplo n.º 5
0
def solve_poisson(n):
    step = 1 / n
    N = (n - 1)**2

    eigenvalues = np.zeros((n - 1, n - 1))
    g = np.zeros((n - 1, n - 1))
    for k in range(1, n):
        for m in range(1, n):
            eigenvalues[k - 1, m - 1] = 4 / (step**2) * \
                                ((np.sin(np.pi * k * step / 2))**2 + (np.sin(np.pi * m * step / 2)) ** 2)
            g[k - 1, m - 1] = f(k, m, step)

    return dstn(idstn(g, norm='ortho', type=1) / eigenvalues,
                norm='ortho',
                type=1)
Exemplo n.º 6
0
def _idstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
    y = _fftpack.idstn(x, type, shape, axes, norm, overwrite_x)
    if norm is None:
        _normalize_inverse(y, 's', type, axes)
    return y
Exemplo n.º 7
0
import numpy as np
from scipy.fftpack import dstn, idstn, irfft, rfft, dst, idst, dct, idct, fft, ifft
import time

# 对应0.02s

A=np.random.random((64,64,64))

tic=time.time()
A=dstn(A,axes=[0,1],type=1,overwrite_x=True)
A=fft(A,axis=-1,overwrite_x=True)

#mpWeighGridOnX=mpWeighGridOnX/fftK2
B=np.random.random((64,64,64))
A/=B

A=np.real(ifft(A,axis=-1,overwrite_x=True))

A=idstn(A,axes=[0,1],type=1,overwrite_x=True)

toc=time.time()

print(toc-tic)
Exemplo n.º 8
0
from scipy.fftpack import dstn, dctn,idstn,idctn
import numpy as np

data=np.random.random((2,3,4))

print(data)
#print(dstn(data,norm='ortho'))
print('-'*50)
#print(idstn(dstn(data,norm='ortho',axes=[0,1]),norm='ortho',axes=[0,1]))

print(idstn(dstn(data,norm='ortho',axes=[0,1]),norm='ortho'))
Exemplo n.º 9
0
from scipy.fftpack import dstn, dctn, idstn, idctn
import numpy as np

dataC = np.random.random((2, 2))
dataO = np.zeros((2, 2))
data1 = np.hstack((dataO, dataO, dataO))
data2 = np.hstack((dataO, dataC, dataO))

data = np.vstack((data1, data2, data1))

dataS2 = idstn(dstn(data, norm='ortho', axes=[0, 1]),
               norm='ortho',
               axes=[0, 1])
dataS2[dataS2 < 1e-6] = 0

dataS3 = idstn(dstn(data, norm='ortho'), norm='ortho')
dataS3[dataS2 < 1e-6] = 0

print(data)
#print(dstn(data,norm='ortho'))
print('-' * 50)
print(dataS2)
print('-' * 50)
print(dataS3)
Exemplo n.º 10
0
def linear_wave_solver(t, u_0, v_0, c, b, a):
    '''A function to solve the linear wave equation
    $$\partial_t^2u = c^2\Delta u -\partial_t u -au$$ on $[0,1]\times [0,1]$
    with zero Dirichlet boundary conditions and initial data 
    $(u(0), \partial_t u(0)) = (u_0,v_0)$. This function uses a spectral method, 
    inparticular the fast sine transform.
    
    Parameters
    -----------------------------
    t = The time the solution is computed at, a real number.
    u_0 =  The inital displacement, an array of real numbers.
    v_0 = The inital velcoty, a real number, an array of real numbers.
    c = The wave speed, a real number.
    b = The dissipation, a real number.
    a = The linear potential, a real number.
    
    Returns
    ------------------------------
    
    u = The displacement at time t, an array.
    v = The velocity at time t, an array.
    '''
    l = len(u_0[0, :])
    f = u_0[1:l - 1, 1:l - 1]
    g = v_0[1:l - 1, 1:l - 1]

    Sf = fft.dstn(f, type=1, norm='ortho')
    Sg = fft.dstn(g, type=1, norm='ortho')

    n = np.arange(1, l - 1)
    n = np.tile(n, (l - 2, 1))

    m = np.arange(1, l - 1) + 0j
    m = np.tile(m, (l - 2, 1)).transpose() + 0j

    lnmminus = (-b - np.sqrt(b**2 - 4 * (c**2 *
                                         (n**2 + m**2) * np.pi**2 + a))) / 2
    lnmplus = (-b + np.sqrt(b**2 - 4 * (c**2 *
                                        (n**2 + m**2) * np.pi**2 + a))) / 2

    Anmplus = (lnmminus * Sf - Sg) / (lnmminus - lnmplus)
    Anmminus = (Sg - lnmplus * Sf) / (lnmminus - lnmplus)

    #The Fourier transform of the solution
    Su = Anmplus * np.exp(lnmplus * t) + Anmminus * np.exp(lnmminus * t)
    Sv = lnmplus * Anmplus * np.exp(
        lnmplus * t) + lnmminus * Anmminus * np.exp(lnmminus * t)

    u = fft.idstn(Su, type=1, norm='ortho')
    v = fft.idstn(Sv, type=1, norm='ortho')

    #We need to add the zeros to the boundary of u and v.
    u = np.pad(u, 1, mode='constant')
    v = np.pad(v, 1, mode='constant')

    #Convert to real to get rid of the superfluous + \eps j terms where \eps is
    #a small real number

    u = np.real(u)
    v = np.real(v)

    return u, v