Exemplo n.º 1
0
    def write_field(self, filename, field,griddescfile=None,fieldname=None):
        """Write a field to an unformatted fortran file using a method from scipy

        Arguments:
        filename: string; full path of the file to write to
        field: A Field (or Field subclass object); field to write
        griddescfile is ignored by this function but included to match the abstract
            function it is overriding
        fieldname is not used by this method and included only in order to match the
            abstract of method of IOFileHelper
        """

        with scipyio.FortranFile(filename,mode='w') as f: #@UndefinedVariable
            print("Writing output to {0}".format(filename))
            f.write_record(field.get_data())
Exemplo n.º 2
0
    def __call__(self, data, fid=slice(None), ftype='utout'):

        ofreqs = self.freqs[fid]
        ofreqs = [(2 * np.pi * freq) + self.dampCoeff for freq in ofreqs]
        outfile = '%s.%s' % (self.projnm, ftype)

        nfreq = len(ofreqs)

        if data.ndim != 3:
            raise Exception('Data must be of shape (nrec, nsrc, nfreq)')

        assert data.shape[2] == nfreq
        nrec = data.shape[0]
        nsrc = data.shape[1]

        with io.FortranFile(outfile, 'w') as ff:
            for i, freq in enumerate(ofreqs):
                panel = np.empty((nsrc, nrec + 1), dtype=np.complex64)
                panel[:, :1] = freq
                panel[:, 1:] = data[:, :, i].T
                ff.write_record(panel.ravel())
Exemplo n.º 3
0
def load__fortranBinary(inpFile=None, shape=(-1, ), datatype="float"):

    # ------------------------------------------------- #
    # --- [1] Arguments                             --- #
    # ------------------------------------------------- #
    if (inpFile is None): sys.exit("[load__fortranBinary.py] inpFile == ??? ")

    # ------------------------------------------------- #
    # --- [2] load fortran Binary file              --- #
    # ------------------------------------------------- #
    import scipy.io as io
    with io.FortranFile(inpFile, mode="r") as f:
        if (datatype.lower() in ["float", "double", "real"]):
            data = f.read_reals(float)
        elif (datatype.lower() in ["int", "integer", "long"]):
            data = f.read_ints(np.int32)

    # ------------------------------------------------- #
    # --- [3] reshape data                          --- #
    # ------------------------------------------------- #

    dshape = data.shape

    if (shape == (-1, )):
        ret = data
    elif (np.abs(np.prod(np.array(shape))) == data.shape[0]):
        ret = data.reshape(shape)
    else:
        print(
            "[load__fortranBinary.py] shape is incompatible with Data.shape !!! ERROR !!! "
        )
        print("[load__fortranBinary.py] shape      == {0} ".format(shape))
        print("[load__fortranBinary.py] data.shape == {0} ".format(data.shape))
        print()
        sys.exit()

    # ------------------------------------------------- #
    # --- [4] return                                --- #
    # ------------------------------------------------- #
    return (ret)
Exemplo n.º 4
0
def read_lblrtm_spectral_output_files(readfrom = 'TAPE13',
                                      max_lines = 1000):
    '''
    Returns a list of records from an unformatted Fortran file
    output by LBLRTM.  This is based on the IDL script
    read_lbl_file.pro which Karen provided.
    INPUT:
    readfrom --- path to the file to read
    max_lines --- maximum number of lines to read from file
    '''
    records = collections.deque([])
    f = spio.FortranFile(readfrom, mode = 'r')
    for k in range(max_lines):
        try:
            r = f.read_reals()
            records.append(r)
        except TypeError:
            print('Encountered TypeError on read_real().  \
            Stop reading and exit.')
            break
    f.close()
    return records
Exemplo n.º 5
0
    def load_field(self,filename,unmask=True,timeslice=None,
                   fieldname=None,check_for_grid_info=False,
                   grid_info=None,grid_type='HD',**grid_kwargs):
        """Load a field from a unformatted fortran file using a method from scipy

        Arguments:
        filename: string; full path of the file to load
        grid_type: string; keyword specifying what type of grid to use
        **grid_kwargs: keyword dictionary; keyword arguments giving parameters of the grid
        fieldname, timeslice, unmask, check_for_grid_info and grid_info are not used by
            this method and included only in order to match the abstract of method of
            IOFileHelper
        Returns:
        A numpy array containing the field

        This scipy method cannot read all Fortran file correctly; success or failure depends
        on the endianness and compiler used by the Fortran used to write the data. It will
        succeed in reading data written using FortranFile.write_record.
        """

        grid = gd.makeGrid(grid_type,**grid_kwargs)
        with scipyio.FortranFile(filename,mode='r') as f: #@UndefinedVariable:
            print("Reading input from {0}".format(filename))
            return f.read_record(self.data_type).reshape(grid.get_grid_dimensions())
import sys
import numpy as np
from scipy import io
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from mpl_toolkits.axes_grid1 import make_axes_locatable

# g file
fp = io.FortranFile(sys.argv[1], "r")
fp.read_ints(np.int32)
index = fp.read_record(np.dtype(('<i4', (1, ))), np.dtype(('<i4', (1, ))))
imax, jmax = index[0], index[1]
xx = fp.read_record(np.dtype(('<f4', imax * jmax)),
                    np.dtype(('<f4', imax * jmax)),
                    np.dtype(('<i4', imax * jmax)))
fp.close()

imx = int(imax)
jmx = int(jmax)
x = xx[0].reshape([imx, jmx], order='F')
y = xx[1].reshape([imx, jmx], order='F')
ib = xx[2].reshape([imx, jmx], order='F')

# q file
fp = io.FortranFile(sys.argv[2], "r")
fp.read_ints(np.int32)
index = fp.read_record(np.dtype(('<i4', (1, ))), np.dtype(('<i4', (1, ))))
imax, jmax = index[0], index[1]
param = fp.read_record(np.dtype(('<f4', (4))))
Exemplo n.º 7
0
def listing2opt(in_listing, out_opt):
    try:
        with spio.FortranFile(in_listing, 'r') as f:
            res = f.read_reals(float)
            while True:
                res = np.vstack((res, f.read_reals(float)))
    except TypeError:
        pass

    listePdt = np.unique(res[:, 0])

    nombrePdT = len(listePdt)
    nombreSection = sum(res[:, 0] == listePdt[0])
    nombreCouche = sum(res[:, 1] == 1999) // (nombrePdT - 1)

    Uno = np.array([1 for i in range(nombreSection)])
    PdT = res[0:nombreSection, 0]
    NumeroSection = res[0:nombreSection, 1]
    variables = res[0:nombreSection, 2:17]
    Q = res[0:nombreSection, 5] * res[0:nombreSection, 6]

    print("%i frames, %i sections, %i couches" %
          (nombrePdT, nombreSection, nombreCouche))

    Resultats = np.insert(variables, 0, PdT, axis=1)
    Resultats = np.insert(Resultats, 1, Uno, axis=1)
    Resultats = np.insert(Resultats, 17, Q, axis=1)
    Resultats = np.insert(Resultats, 2, NumeroSection, axis=1)

    OPT = Resultats

    for i in range(1, nombrePdT):
        rangeIndex_1 = i * nombreSection + (i - 1) * (nombreCouche + 3)
        rangeIndex_2 = rangeIndex_1 + nombreSection

        PdT = res[rangeIndex_1:rangeIndex_2, 0]
        NumeroSection = res[rangeIndex_1:rangeIndex_2, 1]
        variables = res[rangeIndex_1:rangeIndex_2, 2:17]
        Q = res[rangeIndex_1:rangeIndex_2, 5] * res[rangeIndex_1:rangeIndex_2,
                                                    6]

        Resultats = np.insert(variables, 0, PdT, axis=1)
        Resultats = np.insert(Resultats, 1, Uno, axis=1)
        Resultats = np.insert(Resultats, 17, Q, axis=1)
        Resultats = np.insert(Resultats, 2, NumeroSection, axis=1)

        OPT = np.vstack((OPT, Resultats))

    with open(out_opt, 'w') as w:
        w.write('[variables]\n')
        w.write('\"Cote de l eau\";\"Z\";\"m\";3\n')
        w.write('\"Cote du fond\";\"ZREF\";\"m\";4\n')
        w.write('\"Vitesse mineure\";\"VMIN\";\"m/s\";4\n')
        w.write('\"Section mouillee mineure\";\"E1\";\"m2\";2\n')
        w.write('\"Concentration en vase\";\"CVas\";\"g/l\";4\n')
        w.write('\"Concentration en sable\";\"CSbl\";\"g/l\";4\n')
        w.write('\"Depot cumule\";\"DepT\";\"T\";3\n')
        w.write('\"Variation de surface cumulee\";\"Vsur\";\"m2\";3\n')
        w.write('\"Flux massique de vase\";\"FlVs\";\"kg/m/s\";3\n')
        w.write('\"Flux massique de sable\";\"FlSb\";\"kg/m/s\";3\n')
        w.write('\"Contrainte au fond maximale\";\"THMx\";\"N/m2\";3\n')
        w.write('\"Contrainte moyenne\";\"THMy\";\"N/m2\";3\n')
        w.write('\"Contrainte effective moyenne\";\"TEMy\";\"N/m2\";3\n')
        w.write('\"Concentration d' 'equilibre moy\";\"CeqM\";\"g/l\";3\n')
        w.write('\"Debit\";\"Q\";\"m3/s\";1\n')
        w.write('[resultats]\n')
        for i in range(np.size(OPT, 0)):
            j = 0
            w.write("{:16.8f}".format(OPT[i, j]))
            for j in range(1, np.size(OPT, 1)):
                w.write(";{:16.8f}".format(OPT[i, j]))
            w.write("\n")