def plotPrior(result, lineWidth=2, lineColor=np.array([0, 105, 170]) / 255, markerSize=30, showImediate=True): """ This function creates the plot illustrating the priors on the different parameters """ data = result['data'] if np.size(result['options']['stimulusRange']) <= 1: result['options']['stimulusRange'] = np.array( [min(data[:, 0]), max(data[:, 0])]) stimRangeSet = False else: stimRangeSet = True stimRange = result['options']['stimulusRange'] r = stimRange[1] - stimRange[0] # get borders for width # minimum = minimal difference of two stimulus levels if len(np.unique(data[:, 0])) > 1 and not (stimRangeSet): widthmin = min(np.diff(np.sort(np.unique(data[:, 0])))) else: widthmin = 100 * np.spacing(stimRange[1]) # maximum = spread of the data # We use the same prior as we previously used... e.g. we use the factor by # which they differ for the cumulative normal function Cfactor = (_utils.my_norminv(.95,0,1) - _utils.my_norminv(.05,0,1))/ \ (_utils.my_norminv(1-result['options']['widthalpha'], 0,1) - \ _utils.my_norminv(result['options']['widthalpha'], 0,1)) widthmax = r steps = 10000 theta = np.empty(5) for itheta in range(0, 5): if itheta == 0: x = np.linspace(stimRange[0] - .5 * r, stimRange[1] + .5 * r, steps) elif itheta == 1: x = np.linspace(min(result['X1D'][itheta]), max(result['X1D'][1], ), steps) elif itheta == 2: x = np.linspace(0, .5, steps) elif itheta == 3: x = np.linspace(0, .5, steps) elif itheta == 4: x = np.linspace(0, 1, steps) y = result['options']['priors'][itheta](x) theta[itheta] = np.sum(x * y) / np.sum(y) if result['options']['expType'] == 'equalAsymptote': theta[3] = theta[2] if result['options']['expType'] == 'nAFC': theta[3] = 1 / result['options']['expN'] # get limits for the psychometric function plots xLimit = [stimRange[0] - .5 * r, stimRange[1] + .5 * r] """ threshold """ xthresh = np.linspace(xLimit[0], xLimit[1], steps) ythresh = result['options']['priors'][0](xthresh) wthresh = _convn(np.diff(xthresh), .5 * np.array([1, 1])) cthresh = np.cumsum(ythresh * wthresh) plt.subplot(2, 3, 1) plt.plot(xthresh, ythresh, lw=lineWidth, c=lineColor) #plt.hold(True) plt.xlim(xLimit) plt.title('Threshold', fontsize=18) plt.ylabel('Density', fontsize=18) plt.subplot(2, 3, 4) plt.plot(data[:, 0], np.zeros(data[:, 0].shape), 'k.', ms=markerSize * .75) #plt.hold(True) plt.ylabel('Percent Correct', fontsize=18) plt.xlim(xLimit) x = np.linspace(xLimit[0], xLimit[1], steps) for idot in range(0, 5): if idot == 0: xcurrent = theta[0] color = 'k' elif idot == 1: xcurrent = min(xthresh) color = [1, 200 / 255, 0] elif idot == 2: tix = cthresh[cthresh >= .25].size xcurrent = xthresh[-tix] color = 'r' elif idot == 3: tix = cthresh[cthresh >= .75].size xcurrent = xthresh[-tix] color = 'b' elif idot == 4: xcurrent = max(xthresh) color = 'g' y = 100 * (theta[3] + ((1 - theta[2]) - theta[3]) * result['options']['sigmoidHandle'](x, xcurrent, theta[1])) plt.subplot(2, 3, 4) plt.plot(x, y, '-', lw=lineWidth, c=color) plt.subplot(2, 3, 1) plt.plot(xcurrent, result['options']['priors'][0](xcurrent), '.', c=color, ms=markerSize) """ width""" xwidth = np.linspace(widthmin, 3 / Cfactor * widthmax, steps) ywidth = result['options']['priors'][1](xwidth) wwidth = _convn(np.diff(xwidth), .5 * np.array([1, 1])) cwidth = np.cumsum(ywidth * wwidth) plt.subplot(2, 3, 2) plt.plot(xwidth, ywidth, lw=lineWidth, c=lineColor) #plt.hold(True) plt.xlim([widthmin, 3 / Cfactor * widthmax]) plt.title('Width', fontsize=18) plt.subplot(2, 3, 5) plt.plot(data[:, 0], np.zeros(data[:, 0].size), 'k.', ms=markerSize * .75) #plt.hold(True) plt.xlim(xLimit) plt.xlabel('Stimulus Level', fontsize=18) x = np.linspace(xLimit[0], xLimit[1], steps) for idot in range(0, 5): if idot == 0: xcurrent = theta[1] color = 'k' elif idot == 1: xcurrent = min(xwidth) color = [1, 200 / 255, 0] elif idot == 2: wix = cwidth[cwidth >= .25].size xcurrent = xwidth[-wix] color = 'r' elif idot == 3: wix = cwidth[cwidth >= .75].size xcurrent = xwidth[-wix] color = 'b' elif idot == 4: xcurrent = max(xwidth) color = 'g' y = 100 * (theta[3] + (1 - theta[2] - theta[3]) * result['options']['sigmoidHandle'](x, theta[0], xcurrent)) plt.subplot(2, 3, 5) plt.plot(x, y, '-', lw=lineWidth, c=color) plt.subplot(2, 3, 2) plt.plot(xcurrent, result['options']['priors'][1](xcurrent), '.', c=color, ms=markerSize) """ lapse """ xlapse = np.linspace(0, .5, steps) ylapse = result['options']['priors'][2](xlapse) wlapse = _convn(np.diff(xlapse), .5 * np.array([1, 1])) clapse = np.cumsum(ylapse * wlapse) plt.subplot(2, 3, 3) plt.plot(xlapse, ylapse, lw=lineWidth, c=lineColor) #plt.hold(True) plt.xlim([0, .5]) plt.title('\lambda', fontsize=18) plt.subplot(2, 3, 6) plt.plot(data[:, 0], np.zeros(data[:, 0].size), 'k.', ms=markerSize * .75) #plt.hold(True) plt.xlim(xLimit) x = np.linspace(xLimit[0], xLimit[1], steps) for idot in range(0, 5): if idot == 0: xcurrent = theta[2] color = 'k' elif idot == 1: xcurrent = 0 color = [1, 200 / 255, 0] elif idot == 2: lix = clapse[clapse >= .25].size xcurrent = xlapse[-lix] color = 'r' elif idot == 3: lix = clapse[clapse >= .75].size xcurrent = xlapse[-lix] color = 'b' elif idot == 4: xcurrent = .5 color = 'g' y = 100 * (theta[3] + (1 - xcurrent - theta[3]) * result['options']['sigmoidHandle'](x, theta[0], theta[1])) plt.subplot(2, 3, 6) plt.plot(x, y, '-', lw=lineWidth, c=color) plt.subplot(2, 3, 3) plt.plot(np.array(xcurrent), result['options']['priors'][2](np.array(xcurrent)), '.', c=color, ms=markerSize) if (showImediate): plt.show(0)
def plotPrior(result, lineWidth = 2, lineColor = np.array([0,105,170])/255, markerSize = 30, showImediate = True): """ This function creates the plot illustrating the priors on the different parameters """ data = result['data'] if np.size(result['options']['stimulusRange']) <= 1: result['options']['stimulusRange'] = np.array([min(data[:,0]), max(data[:,0])]) stimRangeSet = False else: stimRangeSet = True stimRange = result['options']['stimulusRange'] r = stimRange[1] - stimRange[0] # get borders for width # minimum = minimal difference of two stimulus levels if len(np.unique(data[:,0])) > 1 and not(stimRangeSet): widthmin = min(np.diff(np.sort(np.unique(data[:,0])))) else: widthmin = 100*np.spacing(stimRange[1]) # maximum = spread of the data # We use the same prior as we previously used... e.g. we use the factor by # which they differ for the cumulative normal function Cfactor = (_utils.my_norminv(.95,0,1) - _utils.my_norminv(.05,0,1))/ \ (_utils.my_norminv(1-result['options']['widthalpha'], 0,1) - \ _utils.my_norminv(result['options']['widthalpha'], 0,1)) widthmax = r steps = 10000 theta = np.empty(5) for itheta in range(0,5): if itheta == 0: x = np.linspace(stimRange[0]-.5*r, stimRange[1]+.5*r, steps) elif itheta == 1: x = np.linspace(min(result['X1D'][itheta]), max(result['X1D'][1],),steps) elif itheta == 2: x = np.linspace(0,.5,steps) elif itheta == 3: x = np.linspace(0,.5,steps) elif itheta == 4: x = np.linspace(0,1,steps) y = result['options']['priors'][itheta](x) theta[itheta] = np.sum(x*y)/np.sum(y) if result['options']['expType'] == 'equalAsymptote': theta[3] = theta[2] if result['options']['expType'] == 'nAFC': theta[3] = 1/result['options']['expN'] # get limits for the psychometric function plots xLimit = [stimRange[0] - .5*r , stimRange[1] +.5*r] """ threshold """ xthresh = np.linspace(xLimit[0], xLimit[1], steps ) ythresh = result['options']['priors'][0](xthresh) wthresh = _convn(np.diff(xthresh), .5*np.array([1,1])) cthresh = np.cumsum(ythresh*wthresh) plt.subplot(2,3,1) plt.plot(xthresh,ythresh, lw = lineWidth, c= lineColor) #plt.hold(True) plt.xlim(xLimit) plt.title('Threshold', fontsize = 18) plt.ylabel('Density', fontsize = 18) plt.subplot(2,3,4) plt.plot(data[:,0], np.zeros(data[:,0].shape), 'k.', ms = markerSize*.75 ) #plt.hold(True) plt.ylabel('Percent Correct', fontsize = 18) plt.xlim(xLimit) x = np.linspace(xLimit[0],xLimit[1],steps) for idot in range(0,5): if idot == 0: xcurrent = theta[0] color = 'k' elif idot == 1: xcurrent = min(xthresh) color = [1,200/255,0] elif idot == 2: tix = cthresh[cthresh >=.25].size xcurrent = xthresh[-tix] color = 'r' elif idot == 3: tix = cthresh[cthresh >= .75].size xcurrent = xthresh[-tix] color = 'b' elif idot == 4: xcurrent = max(xthresh) color = 'g' y = 100*(theta[3]+((1-theta[2])-theta[3])*result['options']['sigmoidHandle'](x,xcurrent, theta[1])) plt.subplot(2,3,4) plt.plot(x,y, '-', lw=lineWidth,c=color ) plt.subplot(2,3,1) plt.plot(xcurrent, result['options']['priors'][0](xcurrent), '.',c=color, ms = markerSize) """ width""" xwidth = np.linspace(widthmin, 3/Cfactor*widthmax, steps) ywidth = result['options']['priors'][1](xwidth) wwidth = _convn(np.diff(xwidth), .5*np.array([1,1])) cwidth = np.cumsum(ywidth*wwidth) plt.subplot(2,3,2) plt.plot(xwidth,ywidth,lw=lineWidth,c=lineColor) #plt.hold(True) plt.xlim([widthmin,3/Cfactor*widthmax]) plt.title('Width',fontsize=18) plt.subplot(2,3,5) plt.plot(data[:,0],np.zeros(data[:,0].size),'k.',ms =markerSize*.75) #plt.hold(True) plt.xlim(xLimit) plt.xlabel('Stimulus Level',fontsize=18) x = np.linspace(xLimit[0],xLimit[1],steps) for idot in range(0,5): if idot == 0: xcurrent = theta[1] color = 'k' elif idot == 1: xcurrent = min(xwidth) color = [1,200/255,0] elif idot == 2: wix = cwidth[cwidth >= .25].size xcurrent = xwidth[-wix] color = 'r' elif idot == 3: wix = cwidth[cwidth >= .75].size xcurrent = xwidth[-wix] color = 'b' elif idot ==4: xcurrent = max(xwidth) color = 'g' y = 100*(theta[3]+ (1-theta[2] -theta[3])* result['options']['sigmoidHandle'](x,theta[0],xcurrent)) plt.subplot(2,3,5) plt.plot(x,y,'-',lw = lineWidth, c= color) plt.subplot(2,3,2) plt.plot(xcurrent,result['options']['priors'][1](xcurrent),'.',c = color,ms=markerSize) """ lapse """ xlapse = np.linspace(0,.5,steps) ylapse = result['options']['priors'][2](xlapse) wlapse = _convn(np.diff(xlapse),.5*np.array([1,1])) clapse = np.cumsum(ylapse*wlapse) plt.subplot(2,3,3) plt.plot(xlapse,ylapse,lw=lineWidth,c=lineColor) #plt.hold(True) plt.xlim([0,.5]) plt.title('\lambda',fontsize=18) plt.subplot(2,3,6) plt.plot(data[:,0],np.zeros(data[:,0].size),'k.',ms=markerSize*.75) #plt.hold(True) plt.xlim(xLimit) x = np.linspace(xLimit[0],xLimit[1],steps) for idot in range(0,5): if idot == 0: xcurrent = theta[2] color = 'k' elif idot == 1: xcurrent = 0 color = [1,200/255,0] elif idot == 2: lix = clapse[clapse >= .25].size xcurrent = xlapse[-lix] color = 'r' elif idot == 3: lix = clapse[clapse >= .75].size xcurrent = xlapse[-lix] color = 'b' elif idot ==4: xcurrent = .5 color = 'g' y = 100*(theta[3]+ (1-xcurrent-theta[3])*result['options']['sigmoidHandle'](x,theta[0],theta[1])) plt.subplot(2,3,6) plt.plot(x,y,'-',lw=lineWidth,c=color) plt.subplot(2,3,3) plt.plot(np.array(xcurrent),result['options']['priors'][2](np.array(xcurrent)),'.',c=color,ms=markerSize) if (showImediate): plt.show(0)