def test_gbt(self): ac = np.eye(2) bc = 0.5 * np.ones((2, 1)) cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) dc = np.array([[0.0], [0.0], [-0.33]]) dt_requested = 0.5 alpha = 1.0 / 3.0 ad_truth = 1.6 * np.eye(2) bd_truth = 0.3 * np.ones((2, 1)) cd_truth = np.array([[0.9, 1.2], [1.2, 1.2], [1.2, 0.3]]) dd_truth = np.array([[0.175], [0.2], [-0.205]]) ad, bd, cd, dd, dt = d2c((ac, bc, cc, dc), dt_requested, method='gbt', alpha=alpha) assert_array_almost_equal(ad_truth, ad) assert_array_almost_equal(bd_truth, bd) assert_array_almost_equal(cd_truth, cd) assert_array_almost_equal(dd_truth, dd)
def test_gbt_with_sio_tf_and_zpk(self): """Test method='gbt' with alpha=0.25 for tf and zpk cases.""" # State space coefficients for the continuous SIO system. A = -1.0 B = 1.0 C = 1.0 D = 0.5 # The continuous transfer function coefficients. cnum, cden = ss2tf(A, B, C, D) # Continuous zpk representation cz, cp, ck = ss2zpk(A, B, C, D) h = 1.0 alpha = 0.25 # Explicit formulas, in the scalar case. Ad = (1 + (1 - alpha) * h * A) / (1 - alpha * h * A) Bd = h * B / (1 - alpha * h * A) Cd = C / (1 - alpha * h * A) Dd = D + alpha * C * Bd # Convert the explicit solution to tf dnum, dden = ss2tf(Ad, Bd, Cd, Dd) # Compute the discrete tf using cont2discrete. c2dnum, c2dden, dt = d2c((cnum, cden), h, method='gbt', alpha=alpha) assert_allclose(dnum, c2dnum) assert_allclose(dden, c2dden) # Convert explicit solution to zpk. dz, dp, dk = ss2zpk(Ad, Bd, Cd, Dd) # Compute the discrete zpk using cont2discrete. c2dz, c2dp, c2dk, dt = d2c((cz, cp, ck), h, method='gbt', alpha=alpha) assert_allclose(dz, c2dz) assert_allclose(dp, c2dp) assert_allclose(dk, c2dk)
def test_transferfunction(self): numc = np.array([0.25, 0.25, 0.5]) denc = np.array([0.75, 0.75, 1.0]) numd = np.array([[1.0 / 3.0, -0.427419169438754, 0.221654141101125]]) dend = np.array([1.0, -1.351394049721225, 0.606530659712634]) dt_requested = 0.5 num, den, dt = d2c((numc, denc), dt_requested, method='zoh') assert_array_almost_equal(numd, num) assert_array_almost_equal(dend, den) assert_almost_equal(dt_requested, dt)
def test_zoh(self): ac = np.eye(2) bc = 0.5 * np.ones((2, 1)) cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) dc = np.array([[0.0], [0.0], [-0.33]]) ad_truth = 1.648721270700128 * np.eye(2) bd_truth = 0.324360635350064 * np.ones((2, 1)) # c and d in discrete should be equal to their continuous counterparts dt_requested = 0.5 ad, bd, cd, dd, dt = d2c((ac, bc, cc, dc), dt_requested, method='zoh') assert_array_almost_equal(ad_truth, ad) assert_array_almost_equal(bd_truth, bd) assert_array_almost_equal(cc, cd) assert_array_almost_equal(dc, dd) assert_almost_equal(dt_requested, dt)
def test_zerospolesgain(self): zeros_c = np.array([0.5, -0.5]) poles_c = np.array([1.j / np.sqrt(2), -1.j / np.sqrt(2)]) k_c = 1.0 zeros_d = [1.23371727305860, 0.735356894461267] polls_d = [0.938148335039729 + 0.346233593780536j, 0.938148335039729 - 0.346233593780536j] k_d = 1.0 dt_requested = 0.5 zeros, poles, k, dt = d2c((zeros_c, poles_c, k_c), dt_requested, method='zoh') assert_array_almost_equal(zeros_d, zeros) assert_array_almost_equal(polls_d, poles) assert_almost_equal(k_d, k) assert_almost_equal(dt_requested, dt)
def test_bilinear(self): ac = np.eye(2) bc = 0.5 * np.ones((2, 1)) cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) dc = np.array([[0.0], [0.0], [-0.33]]) dt_requested = 0.5 ad_truth = (5.0 / 3.0) * np.eye(2) bd_truth = (1.0 / 3.0) * np.ones((2, 1)) cd_truth = np.array([[1.0, 4.0 / 3.0], [4.0 / 3.0, 4.0 / 3.0], [4.0 / 3.0, 1.0 / 3.0]]) dd_truth = np.array([[0.291666666666667], [1.0 / 3.0], [-0.121666666666667]]) ad, bd, cd, dd, dt = d2c((ac, bc, cc, dc), dt_requested, method='bilinear') assert_array_almost_equal(ad_truth, ad) assert_array_almost_equal(bd_truth, bd) assert_array_almost_equal(cd_truth, cd) assert_array_almost_equal(dd_truth, dd) assert_almost_equal(dt_requested, dt) # Same continuous system again, but change sampling rate ad_truth = 1.4 * np.eye(2) bd_truth = 0.2 * np.ones((2, 1)) cd_truth = np.array([[0.9, 1.2], [1.2, 1.2], [1.2, 0.3]]) dd_truth = np.array([[0.175], [0.2], [-0.205]]) dt_requested = 1.0 / 3.0 ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, method='bilinear') assert_array_almost_equal(ad_truth, ad) assert_array_almost_equal(bd_truth, bd) assert_array_almost_equal(cd_truth, cd) assert_array_almost_equal(dd_truth, dd) assert_almost_equal(dt_requested, dt)
def test_discrete_approx(self): """ Test that the solution to the discrete approximation of a continuous system actually approximates the solution to the continuous system. This is an indirect test of the correctness of the implementation of cont2discrete. """ def u(t): return np.sin(2.5 * t) a = np.array([[-0.01]]) b = np.array([[1.0]]) c = np.array([[1.0]]) d = np.array([[0.2]]) x0 = 1.0 t = np.linspace(0, 10.0, 101) dt = t[1] - t[0] u1 = u(t) # Use lsim2 to compute the solution to the continuous system. t, yout, xout = lsim2((a, b, c, d), T=t, U=u1, X0=x0, rtol=1e-9, atol=1e-11) # Convert the continuous system to a discrete approximation. dsys = d2c((a, b, c, d), dt, method='bilinear') # Use dlsim with the pairwise averaged input to compute the output # of the discrete system. u2 = 0.5 * (u1[:-1] + u1[1:]) t2 = t[:-1] td2, yd2, xd2 = dlsim(dsys, u=u2.reshape(-1, 1), t=t2, x0=x0) # ymid is the average of consecutive terms of the "exact" output # computed by lsim2. This is what the discrete approximation # actually approximates. ymid = 0.5 * (yout[:-1] + yout[1:]) assert_allclose(yd2.ravel(), ymid, rtol=1e-4)
def test_backward_diff(self): ac = np.eye(2) bc = 0.5 * np.ones((2, 1)) cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) dc = np.array([[0.0], [0.0], [-0.33]]) dt_requested = 0.5 ad_truth = 2.0 * np.eye(2) bd_truth = 0.5 * np.ones((2, 1)) cd_truth = np.array([[1.5, 2.0], [2.0, 2.0], [2.0, 0.5]]) dd_truth = np.array([[0.875], [1.0], [0.295]]) ad, bd, cd, dd, dt = d2c((ac, bc, cc, dc), dt_requested, method='backward_diff') assert_array_almost_equal(ad_truth, ad) assert_array_almost_equal(bd_truth, bd) assert_array_almost_equal(cd_truth, cd) assert_array_almost_equal(dd_truth, dd)
def test_euler(self): ac = np.eye(2) bc = 0.5 * np.ones((2, 1)) cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) dc = np.array([[0.0], [0.0], [-0.33]]) dt_requested = 0.5 ad_truth = 1.5 * np.eye(2) bd_truth = 0.25 * np.ones((2, 1)) cd_truth = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]]) dd_truth = dc ad, bd, cd, dd, dt = d2c((ac, bc, cc, dc), dt_requested, method='euler') assert_array_almost_equal(ad_truth, ad) assert_array_almost_equal(bd_truth, bd) assert_array_almost_equal(cd_truth, cd) assert_array_almost_equal(dd_truth, dd) assert_almost_equal(dt_requested, dt)
def test_zerospolesgain(self): zeros_c = np.array([0.5, -0.5]) poles_c = np.array([1.j / np.sqrt(2), -1.j / np.sqrt(2)]) k_c = 1.0 zeros_d = [1.23371727305860, 0.735356894461267] polls_d = [ 0.938148335039729 + 0.346233593780536j, 0.938148335039729 - 0.346233593780536j ] k_d = 1.0 dt_requested = 0.5 zeros, poles, k, dt = d2c((zeros_c, poles_c, k_c), dt_requested, method='zoh') assert_array_almost_equal(zeros_d, zeros) assert_array_almost_equal(polls_d, poles) assert_almost_equal(k_d, k) assert_almost_equal(dt_requested, dt)