Exemplo n.º 1
0
def test_dtypes_of_operator_sum():
    # gh-6078

    mat_complex = np.random.rand(2, 2) + 1j * np.random.rand(2, 2)
    mat_real = np.random.rand(2, 2)

    complex_operator = interface.aslinearoperator(mat_complex)
    real_operator = interface.aslinearoperator(mat_real)

    sum_complex = complex_operator + complex_operator
    sum_real = real_operator + real_operator

    assert_equal(sum_real.dtype, np.float64)
    assert_equal(sum_complex.dtype, np.complex128)
Exemplo n.º 2
0
 def testComplexX0(self):
     A = 4 * eye(self.n) + ones((self.n, self.n))
     xtrue = transpose(arange(self.n, 0, -1))
     b = aslinearoperator(A).matvec(xtrue)
     x0 = zeros(self.n, dtype=complex)
     x = lsmr(A, b, x0=x0)[0]
     assert norm(x - xtrue) == pytest.approx(0, abs=1e-5)
Exemplo n.º 3
0
 def setup_method(self):
     self.n = 10
     self.A = lowerBidiagonalMatrix(20, self.n)
     self.xtrue = transpose(arange(self.n, 0, -1))
     self.Afun = aslinearoperator(self.A)
     self.b = self.Afun.matvec(self.xtrue)
     self.x0 = ones(self.n)
     self.x00 = self.x0.copy()
     self.returnValues = lsmr(self.A, self.b)
     self.returnValuesX0 = lsmr(self.A, self.b, x0=self.x0)
Exemplo n.º 4
0
def test_transpose_noconjugate():
    X = np.array([[1j]])
    A = interface.aslinearoperator(X)

    B = 1j * A
    Y = 1j * X

    v = np.array([1])

    assert_equal(B.dot(v), Y.dot(v))
    assert_equal(B.T.dot(v), Y.T.dot(v))
Exemplo n.º 5
0
def test_adjoint_conjugate():
    X = np.array([[1j]])
    A = interface.aslinearoperator(X)

    B = 1j * A
    Y = 1j * X

    v = np.array([1])

    assert_equal(B.dot(v), Y.dot(v))
    assert_equal(B.H.dot(v), Y.T.conj().dot(v))
Exemplo n.º 6
0
    def test_dot(self):

        for M, A_array in self.cases:
            A = interface.aslinearoperator(M)
            M, N = A.shape

            x0 = np.array([1, 2, 3])
            x1 = np.array([[1], [2], [3]])
            x2 = np.array([[1, 4], [2, 5], [3, 6]])

            assert_equal(A.dot(x0), A_array.dot(x0))
            assert_equal(A.dot(x1), A_array.dot(x1))
            assert_equal(A.dot(x2), A_array.dot(x2))
Exemplo n.º 7
0
def test_attributes():
    A = interface.aslinearoperator(np.arange(16).reshape(4, 4))

    def always_four_ones(x):
        x = np.asarray(x)
        assert_(x.shape == (3, ) or x.shape == (3, 1))
        return np.ones(4)

    B = interface.LinearOperator(shape=(4, 3), matvec=always_four_ones)

    for op in [A, B, A * B, A.H, A + A, B + B, A**4]:
        assert_(hasattr(op, "dtype"))
        assert_(hasattr(op, "shape"))
        assert_(hasattr(op, "_matvec"))
Exemplo n.º 8
0
    def test_basic(self):

        for M, A_array in self.cases:
            A = interface.aslinearoperator(M)
            M, N = A.shape

            xs = [np.array([1, 2, 3]), np.array([[1], [2], [3]])]
            ys = [np.array([1, 2]), np.array([[1], [2]])]

            if A.dtype == np.complex_:
                xs += [np.array([1, 2j, 3j]), np.array([[1], [2j], [3j]])]
                ys += [np.array([1, 2j]), np.array([[1], [2j]])]

            x2 = np.array([[1, 4], [2, 5], [3, 6]])

            for x in xs:
                assert_equal(A.matvec(x), A_array.dot(x))
                assert_equal(A * x, A_array.dot(x))

            assert_equal(A.matmat(x2), A_array.dot(x2))
            assert_equal(A * x2, A_array.dot(x2))

            for y in ys:
                assert_equal(A.rmatvec(y), A_array.T.conj().dot(y))
                assert_equal(A.T.matvec(y), A_array.T.dot(y))
                assert_equal(A.H.matvec(y), A_array.T.conj().dot(y))

            for y in ys:
                if y.ndim < 2:
                    continue
                assert_equal(A.rmatmat(y), A_array.T.conj().dot(y))
                assert_equal(A.T.matmat(y), A_array.T.dot(y))
                assert_equal(A.H.matmat(y), A_array.T.conj().dot(y))

            if hasattr(M, 'dtype'):
                assert_equal(A.dtype, M.dtype)

            assert_(hasattr(A, 'args'))
Exemplo n.º 9
0
def lsmrtest(m, n, damp):
    """Verbose testing of lsmr"""

    A = lowerBidiagonalMatrix(m, n)
    xtrue = arange(n, 0, -1, dtype=float)
    Afun = aslinearoperator(A)

    b = Afun.matvec(xtrue)

    atol = 1.0e-7
    btol = 1.0e-7
    conlim = 1.0e+10
    itnlim = 10 * n
    show = 1

    x, istop, itn, normr, normar, norma, conda, normx \
      = lsmr(A, b, damp, atol, btol, conlim, itnlim, show)

    j1 = min(n, 5)
    j2 = max(n - 4, 1)
    print(' ')
    print('First elements of x:')
    str = ['%10.4f' % (xi) for xi in x[0:j1]]
    print(''.join(str))
    print(' ')
    print('Last  elements of x:')
    str = ['%10.4f' % (xi) for xi in x[j2 - 1:]]
    print(''.join(str))

    r = b - Afun.matvec(x)
    r2 = sqrt(norm(r)**2 + (damp * norm(x))**2)
    print(' ')
    str = 'normr (est.)  %17.10e' % (normr)
    str2 = 'normr (true)  %17.10e' % (r2)
    print(str)
    print(str2)
    print(' ')
Exemplo n.º 10
0
Arquivo: lsmr.py Projeto: tupui/scipy
def lsmr(A,
         b,
         damp=0.0,
         atol=1e-6,
         btol=1e-6,
         conlim=1e8,
         maxiter=None,
         show=False,
         x0=None):
    """Iterative solver for least-squares problems.

    lsmr solves the system of linear equations ``Ax = b``. If the system
    is inconsistent, it solves the least-squares problem ``min ||b - Ax||_2``.
    ``A`` is a rectangular matrix of dimension m-by-n, where all cases are
    allowed: m = n, m > n, or m < n. ``b`` is a vector of length m.
    The matrix A may be dense or sparse (usually sparse).

    Parameters
    ----------
    A : {sparse matrix, ndarray, LinearOperator}
        Matrix A in the linear system.
        Alternatively, ``A`` can be a linear operator which can
        produce ``Ax`` and ``A^H x`` using, e.g.,
        ``scipy.sparse.linalg.LinearOperator``.
    b : array_like, shape (m,)
        Vector ``b`` in the linear system.
    damp : float
        Damping factor for regularized least-squares. `lsmr` solves
        the regularized least-squares problem::

         min ||(b) - (  A   )x||
             ||(0)   (damp*I) ||_2

        where damp is a scalar.  If damp is None or 0, the system
        is solved without regularization. Default is 0.
    atol, btol : float, optional
        Stopping tolerances. `lsmr` continues iterations until a
        certain backward error estimate is smaller than some quantity
        depending on atol and btol.  Let ``r = b - Ax`` be the
        residual vector for the current approximate solution ``x``.
        If ``Ax = b`` seems to be consistent, `lsmr` terminates
        when ``norm(r) <= atol * norm(A) * norm(x) + btol * norm(b)``.
        Otherwise, `lsmr` terminates when ``norm(A^H r) <=
        atol * norm(A) * norm(r)``.  If both tolerances are 1.0e-6 (default),
        the final ``norm(r)`` should be accurate to about 6
        digits. (The final ``x`` will usually have fewer correct digits,
        depending on ``cond(A)`` and the size of LAMBDA.)  If `atol`
        or `btol` is None, a default value of 1.0e-6 will be used.
        Ideally, they should be estimates of the relative error in the
        entries of ``A`` and ``b`` respectively.  For example, if the entries
        of ``A`` have 7 correct digits, set ``atol = 1e-7``. This prevents
        the algorithm from doing unnecessary work beyond the
        uncertainty of the input data.
    conlim : float, optional
        `lsmr` terminates if an estimate of ``cond(A)`` exceeds
        `conlim`.  For compatible systems ``Ax = b``, conlim could be
        as large as 1.0e+12 (say).  For least-squares problems,
        `conlim` should be less than 1.0e+8. If `conlim` is None, the
        default value is 1e+8.  Maximum precision can be obtained by
        setting ``atol = btol = conlim = 0``, but the number of
        iterations may then be excessive. Default is 1e8.
    maxiter : int, optional
        `lsmr` terminates if the number of iterations reaches
        `maxiter`.  The default is ``maxiter = min(m, n)``.  For
        ill-conditioned systems, a larger value of `maxiter` may be
        needed. Default is False.
    show : bool, optional
        Print iterations logs if ``show=True``. Default is False.
    x0 : array_like, shape (n,), optional
        Initial guess of ``x``, if None zeros are used. Default is None.

        .. versionadded:: 1.0.0

    Returns
    -------
    x : ndarray of float
        Least-square solution returned.
    istop : int
        istop gives the reason for stopping::

          istop   = 0 means x=0 is a solution.  If x0 was given, then x=x0 is a
                      solution.
                  = 1 means x is an approximate solution to A@x = B,
                      according to atol and btol.
                  = 2 means x approximately solves the least-squares problem
                      according to atol.
                  = 3 means COND(A) seems to be greater than CONLIM.
                  = 4 is the same as 1 with atol = btol = eps (machine
                      precision)
                  = 5 is the same as 2 with atol = eps.
                  = 6 is the same as 3 with CONLIM = 1/eps.
                  = 7 means ITN reached maxiter before the other stopping
                      conditions were satisfied.

    itn : int
        Number of iterations used.
    normr : float
        ``norm(b-Ax)``
    normar : float
        ``norm(A^H (b - Ax))``
    norma : float
        ``norm(A)``
    conda : float
        Condition number of A.
    normx : float
        ``norm(x)``

    Notes
    -----

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1] D. C.-L. Fong and M. A. Saunders,
           "LSMR: An iterative algorithm for sparse least-squares problems",
           SIAM J. Sci. Comput., vol. 33, pp. 2950-2971, 2011.
           :arxiv:`1006.0758`
    .. [2] LSMR Software, https://web.stanford.edu/group/SOL/software/lsmr/

    Examples
    --------
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import lsmr
    >>> A = csc_matrix([[1., 0.], [1., 1.], [0., 1.]], dtype=float)

    The first example has the trivial solution `[0, 0]`

    >>> b = np.array([0., 0., 0.], dtype=float)
    >>> x, istop, itn, normr = lsmr(A, b)[:4]
    >>> istop
    0
    >>> x
    array([0., 0.])

    The stopping code `istop=0` returned indicates that a vector of zeros was
    found as a solution. The returned solution `x` indeed contains `[0., 0.]`.
    The next example has a non-trivial solution:

    >>> b = np.array([1., 0., -1.], dtype=float)
    >>> x, istop, itn, normr = lsmr(A, b)[:4]
    >>> istop
    1
    >>> x
    array([ 1., -1.])
    >>> itn
    1
    >>> normr
    4.440892098500627e-16

    As indicated by `istop=1`, `lsmr` found a solution obeying the tolerance
    limits. The given solution `[1., -1.]` obviously solves the equation. The
    remaining return values include information about the number of iterations
    (`itn=1`) and the remaining difference of left and right side of the solved
    equation.
    The final example demonstrates the behavior in the case where there is no
    solution for the equation:

    >>> b = np.array([1., 0.01, -1.], dtype=float)
    >>> x, istop, itn, normr = lsmr(A, b)[:4]
    >>> istop
    2
    >>> x
    array([ 1.00333333, -0.99666667])
    >>> A.dot(x)-b
    array([ 0.00333333, -0.00333333,  0.00333333])
    >>> normr
    0.005773502691896255

    `istop` indicates that the system is inconsistent and thus `x` is rather an
    approximate solution to the corresponding least-squares problem. `normr`
    contains the minimal distance that was found.
    """

    A = aslinearoperator(A)
    b = atleast_1d(b)
    if b.ndim > 1:
        b = b.squeeze()

    msg = ('The exact solution is x = 0, or x = x0, if x0 was given  ',
           'Ax - b is small enough, given atol, btol                  ',
           'The least-squares solution is good enough, given atol     ',
           'The estimate of cond(Abar) has exceeded conlim            ',
           'Ax - b is small enough for this machine                   ',
           'The least-squares solution is good enough for this machine',
           'Cond(Abar) seems to be too large for this machine         ',
           'The iteration limit has been reached                      ')

    hdg1 = '   itn      x(1)       norm r    norm Ar'
    hdg2 = ' compatible   LS      norm A   cond A'
    pfreq = 20  # print frequency (for repeating the heading)
    pcount = 0  # print counter

    m, n = A.shape

    # stores the num of singular values
    minDim = min([m, n])

    if maxiter is None:
        maxiter = minDim

    if x0 is None:
        dtype = result_type(A, b, float)
    else:
        dtype = result_type(A, b, x0, float)

    if show:
        print(' ')
        print('LSMR            Least-squares solution of  Ax = b\n')
        print(f'The matrix A has {m} rows and {n} columns')
        print('damp = %20.14e\n' % (damp))
        print('atol = %8.2e                 conlim = %8.2e\n' % (atol, conlim))
        print('btol = %8.2e             maxiter = %8g\n' % (btol, maxiter))

    u = b
    normb = norm(b)
    if x0 is None:
        x = zeros(n, dtype)
        beta = normb.copy()
    else:
        x = atleast_1d(x0.copy())
        u = u - A.matvec(x)
        beta = norm(u)

    if beta > 0:
        u = (1 / beta) * u
        v = A.rmatvec(u)
        alpha = norm(v)
    else:
        v = zeros(n, dtype)
        alpha = 0

    if alpha > 0:
        v = (1 / alpha) * v

    # Initialize variables for 1st iteration.

    itn = 0
    zetabar = alpha * beta
    alphabar = alpha
    rho = 1
    rhobar = 1
    cbar = 1
    sbar = 0

    h = v.copy()
    hbar = zeros(n, dtype)

    # Initialize variables for estimation of ||r||.

    betadd = beta
    betad = 0
    rhodold = 1
    tautildeold = 0
    thetatilde = 0
    zeta = 0
    d = 0

    # Initialize variables for estimation of ||A|| and cond(A)

    normA2 = alpha * alpha
    maxrbar = 0
    minrbar = 1e+100
    normA = sqrt(normA2)
    condA = 1
    normx = 0

    # Items for use in stopping rules, normb set earlier
    istop = 0
    ctol = 0
    if conlim > 0:
        ctol = 1 / conlim
    normr = beta

    # Reverse the order here from the original matlab code because
    # there was an error on return when arnorm==0
    normar = alpha * beta
    if normar == 0:
        if show:
            print(msg[0])
        return x, istop, itn, normr, normar, normA, condA, normx

    if normb == 0:
        x = b
        return x, istop, itn, normr, normar, normA, condA, normx

    if show:
        print(' ')
        print(hdg1, hdg2)
        test1 = 1
        test2 = alpha / beta
        str1 = '%6g %12.5e' % (itn, x[0])
        str2 = ' %10.3e %10.3e' % (normr, normar)
        str3 = '  %8.1e %8.1e' % (test1, test2)
        print(''.join([str1, str2, str3]))

    # Main iteration loop.
    while itn < maxiter:
        itn = itn + 1

        # Perform the next step of the bidiagonalization to obtain the
        # next  beta, u, alpha, v.  These satisfy the relations
        #         beta*u  =  A@v   -  alpha*u,
        #        alpha*v  =  A'@u  -  beta*v.

        u *= -alpha
        u += A.matvec(v)
        beta = norm(u)

        if beta > 0:
            u *= (1 / beta)
            v *= -beta
            v += A.rmatvec(u)
            alpha = norm(v)
            if alpha > 0:
                v *= (1 / alpha)

        # At this point, beta = beta_{k+1}, alpha = alpha_{k+1}.

        # Construct rotation Qhat_{k,2k+1}.

        chat, shat, alphahat = _sym_ortho(alphabar, damp)

        # Use a plane rotation (Q_i) to turn B_i to R_i

        rhoold = rho
        c, s, rho = _sym_ortho(alphahat, beta)
        thetanew = s * alpha
        alphabar = c * alpha

        # Use a plane rotation (Qbar_i) to turn R_i^T to R_i^bar

        rhobarold = rhobar
        zetaold = zeta
        thetabar = sbar * rho
        rhotemp = cbar * rho
        cbar, sbar, rhobar = _sym_ortho(cbar * rho, thetanew)
        zeta = cbar * zetabar
        zetabar = -sbar * zetabar

        # Update h, h_hat, x.

        hbar *= -(thetabar * rho / (rhoold * rhobarold))
        hbar += h
        x += (zeta / (rho * rhobar)) * hbar
        h *= -(thetanew / rho)
        h += v

        # Estimate of ||r||.

        # Apply rotation Qhat_{k,2k+1}.
        betaacute = chat * betadd
        betacheck = -shat * betadd

        # Apply rotation Q_{k,k+1}.
        betahat = c * betaacute
        betadd = -s * betaacute

        # Apply rotation Qtilde_{k-1}.
        # betad = betad_{k-1} here.

        thetatildeold = thetatilde
        ctildeold, stildeold, rhotildeold = _sym_ortho(rhodold, thetabar)
        thetatilde = stildeold * rhobar
        rhodold = ctildeold * rhobar
        betad = -stildeold * betad + ctildeold * betahat

        # betad   = betad_k here.
        # rhodold = rhod_k  here.

        tautildeold = (zetaold - thetatildeold * tautildeold) / rhotildeold
        taud = (zeta - thetatilde * tautildeold) / rhodold
        d = d + betacheck * betacheck
        normr = sqrt(d + (betad - taud)**2 + betadd * betadd)

        # Estimate ||A||.
        normA2 = normA2 + beta * beta
        normA = sqrt(normA2)
        normA2 = normA2 + alpha * alpha

        # Estimate cond(A).
        maxrbar = max(maxrbar, rhobarold)
        if itn > 1:
            minrbar = min(minrbar, rhobarold)
        condA = max(maxrbar, rhotemp) / min(minrbar, rhotemp)

        # Test for convergence.

        # Compute norms for convergence testing.
        normar = abs(zetabar)
        normx = norm(x)

        # Now use these norms to estimate certain other quantities,
        # some of which will be small near a solution.

        test1 = normr / normb
        if (normA * normr) != 0:
            test2 = normar / (normA * normr)
        else:
            test2 = infty
        test3 = 1 / condA
        t1 = test1 / (1 + normA * normx / normb)
        rtol = btol + atol * normA * normx / normb

        # The following tests guard against extremely small values of
        # atol, btol or ctol.  (The user may have set any or all of
        # the parameters atol, btol, conlim  to 0.)
        # The effect is equivalent to the normAl tests using
        # atol = eps,  btol = eps,  conlim = 1/eps.

        if itn >= maxiter:
            istop = 7
        if 1 + test3 <= 1:
            istop = 6
        if 1 + test2 <= 1:
            istop = 5
        if 1 + t1 <= 1:
            istop = 4

        # Allow for tolerances set by the user.

        if test3 <= ctol:
            istop = 3
        if test2 <= atol:
            istop = 2
        if test1 <= rtol:
            istop = 1

        # See if it is time to print something.

        if show:
            if (n <= 40) or (itn <= 10) or (itn >= maxiter - 10) or \
               (itn % 10 == 0) or (test3 <= 1.1 * ctol) or \
               (test2 <= 1.1 * atol) or (test1 <= 1.1 * rtol) or \
               (istop != 0):

                if pcount >= pfreq:
                    pcount = 0
                    print(' ')
                    print(hdg1, hdg2)
                pcount = pcount + 1
                str1 = '%6g %12.5e' % (itn, x[0])
                str2 = ' %10.3e %10.3e' % (normr, normar)
                str3 = '  %8.1e %8.1e' % (test1, test2)
                str4 = ' %8.1e %8.1e' % (normA, condA)
                print(''.join([str1, str2, str3, str4]))

        if istop > 0:
            break

    # Print the stopping condition.

    if show:
        print(' ')
        print('LSMR finished')
        print(msg[istop])
        print('istop =%8g    normr =%8.1e' % (istop, normr))
        print('    normA =%8.1e    normAr =%8.1e' % (normA, normar))
        print('itn   =%8g    condA =%8.1e' % (itn, condA))
        print('    normx =%8.1e' % (normx))
        print(str1, str2)
        print(str3, str4)

    return x, istop, itn, normr, normar, normA, condA, normx
Exemplo n.º 11
0
def test_ndim():
    X = np.array([[1]])
    A = interface.aslinearoperator(X)
    assert_equal(A.ndim, 2)
Exemplo n.º 12
0
 def assertCompatibleSystem(self, A, xtrue):
     Afun = aslinearoperator(A)
     b = Afun.matvec(xtrue)
     x = lsmr(A, b)[0]
     assert norm(x - xtrue) == pytest.approx(0, abs=1e-5)
Exemplo n.º 13
0
    def setup_method(self):
        self.cases = []

        def make_cases(original, dtype):
            cases = []

            cases.append((matrix(original, dtype=dtype), original))
            cases.append((np.array(original, dtype=dtype), original))
            cases.append((sparse.csr_matrix(original, dtype=dtype), original))

            # Test default implementations of _adjoint and _rmatvec, which
            # refer to each other.
            def mv(x, dtype):
                y = original.dot(x)
                if len(x.shape) == 2:
                    y = y.reshape(-1, 1)
                return y

            def rmv(x, dtype):
                return original.T.conj().dot(x)

            class BaseMatlike(interface.LinearOperator):
                args = ()

                def __init__(self, dtype):
                    self.dtype = np.dtype(dtype)
                    self.shape = original.shape

                def _matvec(self, x):
                    return mv(x, self.dtype)

            class HasRmatvec(BaseMatlike):
                args = ()

                def _rmatvec(self, x):
                    return rmv(x, self.dtype)

            class HasAdjoint(BaseMatlike):
                args = ()

                def _adjoint(self):
                    shape = self.shape[1], self.shape[0]
                    matvec = partial(rmv, dtype=self.dtype)
                    rmatvec = partial(mv, dtype=self.dtype)
                    return interface.LinearOperator(matvec=matvec,
                                                    rmatvec=rmatvec,
                                                    dtype=self.dtype,
                                                    shape=shape)

            class HasRmatmat(HasRmatvec):
                def _matmat(self, x):
                    return original.dot(x)

                def _rmatmat(self, x):
                    return original.T.conj().dot(x)

            cases.append((HasRmatvec(dtype), original))
            cases.append((HasAdjoint(dtype), original))
            cases.append((HasRmatmat(dtype), original))
            return cases

        original = np.array([[1, 2, 3], [4, 5, 6]])
        self.cases += make_cases(original, np.int32)
        self.cases += make_cases(original, np.float32)
        self.cases += make_cases(original, np.float64)
        self.cases += [(interface.aslinearoperator(M).T, A.T)
                       for M, A in make_cases(original.T, np.float64)]
        self.cases += [(interface.aslinearoperator(M).H, A.T.conj())
                       for M, A in make_cases(original.T, np.float64)]

        original = np.array([[1, 2j, 3j], [4j, 5j, 6]])
        self.cases += make_cases(original, np.complex_)
        self.cases += [(interface.aslinearoperator(M).T, A.T)
                       for M, A in make_cases(original.T, np.complex_)]
        self.cases += [(interface.aslinearoperator(M).H, A.T.conj())
                       for M, A in make_cases(original.T, np.complex_)]
Exemplo n.º 14
0
def make_system(A, M, x0, b):
    """Make a linear system Ax=b

    Parameters
    ----------
    A : LinearOperator
        sparse or dense matrix (or any valid input to aslinearoperator)
    M : {LinearOperator, Nones}
        preconditioner
        sparse or dense matrix (or any valid input to aslinearoperator)
    x0 : {array_like, str, None}
        initial guess to iterative method.
        ``x0 = 'Mb'`` means using the nonzero initial guess ``M @ b``.
        Default is `None`, which means using the zero initial guess.
    b : array_like
        right hand side

    Returns
    -------
    (A, M, x, b, postprocess)
        A : LinearOperator
            matrix of the linear system
        M : LinearOperator
            preconditioner
        x : rank 1 ndarray
            initial guess
        b : rank 1 ndarray
            right hand side
        postprocess : function
            converts the solution vector to the appropriate
            type and dimensions (e.g. (N,1) matrix)

    """
    A_ = A
    A = aslinearoperator(A)

    if A.shape[0] != A.shape[1]:
        raise ValueError(f'expected square matrix, but got shape={(A.shape,)}')

    N = A.shape[0]

    b = asanyarray(b)

    if not (b.shape == (N, 1) or b.shape == (N, )):
        raise ValueError(f'shapes of A {A.shape} and b {b.shape} are '
                         'incompatible')

    if b.dtype.char not in 'fdFD':
        b = b.astype('d')  # upcast non-FP types to double

    def postprocess(x):
        return x

    if hasattr(A, 'dtype'):
        xtype = A.dtype.char
    else:
        xtype = A.matvec(b).dtype.char
    xtype = coerce(xtype, b.dtype.char)

    b = asarray(b, dtype=xtype)  # make b the same type as x
    b = b.ravel()

    # process preconditioner
    if M is None:
        if hasattr(A_, 'psolve'):
            psolve = A_.psolve
        else:
            psolve = id
        if hasattr(A_, 'rpsolve'):
            rpsolve = A_.rpsolve
        else:
            rpsolve = id
        if psolve is id and rpsolve is id:
            M = IdentityOperator(shape=A.shape, dtype=A.dtype)
        else:
            M = LinearOperator(A.shape,
                               matvec=psolve,
                               rmatvec=rpsolve,
                               dtype=A.dtype)
    else:
        M = aslinearoperator(M)
        if A.shape != M.shape:
            raise ValueError('matrix and preconditioner have different shapes')

    # set initial guess
    if x0 is None:
        x = zeros(N, dtype=xtype)
    elif isinstance(x0, str):
        if x0 == 'Mb':  # use nonzero initial guess ``M @ b``
            bCopy = b.copy()
            x = M.matvec(bCopy)
    else:
        x = array(x0, dtype=xtype)
        if not (x.shape == (N, 1) or x.shape == (N, )):
            raise ValueError(f'shapes of A {A.shape} and '
                             f'x0 {x.shape} are incompatible')
        x = x.ravel()

    return A, M, x, b, postprocess
Exemplo n.º 15
0
def _iv(A, k, ncv, tol, which, v0, maxiter, return_singular, solver,
        random_state):

    # input validation/standardization for `solver`
    # out of order because it's needed for other parameters
    solver = str(solver).lower()
    solvers = {"arpack", "lobpcg", "propack"}
    if solver not in solvers:
        raise ValueError(f"solver must be one of {solvers}.")

    # input validation/standardization for `A`
    A = aslinearoperator(A)  # this takes care of some input validation
    if not (np.issubdtype(A.dtype, np.complexfloating)
            or np.issubdtype(A.dtype, np.floating)):
        message = "`A` must be of floating or complex floating data type."
        raise ValueError(message)
    if np.prod(A.shape) == 0:
        message = "`A` must not be empty."
        raise ValueError(message)

    # input validation/standardization for `k`
    kmax = min(A.shape) if solver == 'propack' else min(A.shape) - 1
    if int(k) != k or not (0 < k <= kmax):
        message = "`k` must be an integer satisfying `0 < k < min(A.shape)`."
        raise ValueError(message)
    k = int(k)

    # input validation/standardization for `ncv`
    if solver == "arpack" and ncv is not None:
        if int(ncv) != ncv or not (k < ncv < min(A.shape)):
            message = ("`ncv` must be an integer satisfying "
                       "`k < ncv < min(A.shape)`.")
            raise ValueError(message)
        ncv = int(ncv)

    # input validation/standardization for `tol`
    if tol < 0 or not np.isfinite(tol):
        message = "`tol` must be a non-negative floating point value."
        raise ValueError(message)
    tol = float(tol)

    # input validation/standardization for `which`
    which = str(which).upper()
    whichs = {'LM', 'SM'}
    if which not in whichs:
        raise ValueError(f"`which` must be in {whichs}.")

    # input validation/standardization for `v0`
    if v0 is not None:
        v0 = np.atleast_1d(v0)
        if not (np.issubdtype(v0.dtype, np.complexfloating)
                or np.issubdtype(v0.dtype, np.floating)):
            message = ("`v0` must be of floating or complex floating "
                       "data type.")
            raise ValueError(message)

        shape = (A.shape[0], ) if solver == 'propack' else (min(A.shape), )
        if v0.shape != shape:
            message = "`v0` must have shape {shape}."
            raise ValueError(message)

    # input validation/standardization for `maxiter`
    if maxiter is not None and (int(maxiter) != maxiter or maxiter <= 0):
        message = "`maxiter` must be a positive integer."
        raise ValueError(message)
    maxiter = int(maxiter) if maxiter is not None else maxiter

    # input validation/standardization for `return_singular_vectors`
    # not going to be flexible with this; too complicated for little gain
    rs_options = {True, False, "vh", "u"}
    if return_singular not in rs_options:
        raise ValueError(f"`return_singular_vectors` must be in {rs_options}.")

    random_state = check_random_state(random_state)

    return (A, k, ncv, tol, which, v0, maxiter, return_singular, solver,
            random_state)
Exemplo n.º 16
0
def lsqr(A,
         b,
         damp=0.0,
         atol=1e-6,
         btol=1e-6,
         conlim=1e8,
         iter_lim=None,
         show=False,
         calc_var=False,
         x0=None):
    """Find the least-squares solution to a large, sparse, linear system
    of equations.

    The function solves ``Ax = b``  or  ``min ||Ax - b||^2`` or
    ``min ||Ax - b||^2 + d^2 ||x - x0||^2``.

    The matrix A may be square or rectangular (over-determined or
    under-determined), and may have any rank.

    ::

      1. Unsymmetric equations --    solve  Ax = b

      2. Linear least squares  --    solve  Ax = b
                                     in the least-squares sense

      3. Damped least squares  --    solve  (   A    )*x = (    b    )
                                            ( damp*I )     ( damp*x0 )
                                     in the least-squares sense

    Parameters
    ----------
    A : {sparse matrix, ndarray, LinearOperator}
        Representation of an m-by-n matrix.
        Alternatively, ``A`` can be a linear operator which can
        produce ``Ax`` and ``A^T x`` using, e.g.,
        ``scipy.sparse.linalg.LinearOperator``.
    b : array_like, shape (m,)
        Right-hand side vector ``b``.
    damp : float
        Damping coefficient. Default is 0.
    atol, btol : float, optional
        Stopping tolerances. `lsqr` continues iterations until a
        certain backward error estimate is smaller than some quantity
        depending on atol and btol.  Let ``r = b - Ax`` be the
        residual vector for the current approximate solution ``x``.
        If ``Ax = b`` seems to be consistent, `lsqr` terminates
        when ``norm(r) <= atol * norm(A) * norm(x) + btol * norm(b)``.
        Otherwise, `lsqr` terminates when ``norm(A^H r) <=
        atol * norm(A) * norm(r)``.  If both tolerances are 1.0e-6 (default),
        the final ``norm(r)`` should be accurate to about 6
        digits. (The final ``x`` will usually have fewer correct digits,
        depending on ``cond(A)`` and the size of LAMBDA.)  If `atol`
        or `btol` is None, a default value of 1.0e-6 will be used.
        Ideally, they should be estimates of the relative error in the
        entries of ``A`` and ``b`` respectively.  For example, if the entries
        of ``A`` have 7 correct digits, set ``atol = 1e-7``. This prevents
        the algorithm from doing unnecessary work beyond the
        uncertainty of the input data.
    conlim : float, optional
        Another stopping tolerance.  lsqr terminates if an estimate of
        ``cond(A)`` exceeds `conlim`.  For compatible systems ``Ax =
        b``, `conlim` could be as large as 1.0e+12 (say).  For
        least-squares problems, conlim should be less than 1.0e+8.
        Maximum precision can be obtained by setting ``atol = btol =
        conlim = zero``, but the number of iterations may then be
        excessive. Default is 1e8.
    iter_lim : int, optional
        Explicit limitation on number of iterations (for safety).
    show : bool, optional
        Display an iteration log. Default is False.
    calc_var : bool, optional
        Whether to estimate diagonals of ``(A'A + damp^2*I)^{-1}``.
    x0 : array_like, shape (n,), optional
        Initial guess of x, if None zeros are used. Default is None.

        .. versionadded:: 1.0.0

    Returns
    -------
    x : ndarray of float
        The final solution.
    istop : int
        Gives the reason for termination.
        1 means x is an approximate solution to Ax = b.
        2 means x approximately solves the least-squares problem.
    itn : int
        Iteration number upon termination.
    r1norm : float
        ``norm(r)``, where ``r = b - Ax``.
    r2norm : float
        ``sqrt( norm(r)^2  +  damp^2 * norm(x - x0)^2 )``.  Equal to `r1norm`
        if ``damp == 0``.
    anorm : float
        Estimate of Frobenius norm of ``Abar = [[A]; [damp*I]]``.
    acond : float
        Estimate of ``cond(Abar)``.
    arnorm : float
        Estimate of ``norm(A'@r - damp^2*(x - x0))``.
    xnorm : float
        ``norm(x)``
    var : ndarray of float
        If ``calc_var`` is True, estimates all diagonals of
        ``(A'A)^{-1}`` (if ``damp == 0``) or more generally ``(A'A +
        damp^2*I)^{-1}``.  This is well defined if A has full column
        rank or ``damp > 0``.  (Not sure what var means if ``rank(A)
        < n`` and ``damp = 0.``)

    Notes
    -----
    LSQR uses an iterative method to approximate the solution.  The
    number of iterations required to reach a certain accuracy depends
    strongly on the scaling of the problem.  Poor scaling of the rows
    or columns of A should therefore be avoided where possible.

    For example, in problem 1 the solution is unaltered by
    row-scaling.  If a row of A is very small or large compared to
    the other rows of A, the corresponding row of ( A  b ) should be
    scaled up or down.

    In problems 1 and 2, the solution x is easily recovered
    following column-scaling.  Unless better information is known,
    the nonzero columns of A should be scaled so that they all have
    the same Euclidean norm (e.g., 1.0).

    In problem 3, there is no freedom to re-scale if damp is
    nonzero.  However, the value of damp should be assigned only
    after attention has been paid to the scaling of A.

    The parameter damp is intended to help regularize
    ill-conditioned systems, by preventing the true solution from
    being very large.  Another aid to regularization is provided by
    the parameter acond, which may be used to terminate iterations
    before the computed solution becomes very large.

    If some initial estimate ``x0`` is known and if ``damp == 0``,
    one could proceed as follows:

      1. Compute a residual vector ``r0 = b - A@x0``.
      2. Use LSQR to solve the system  ``A@dx = r0``.
      3. Add the correction dx to obtain a final solution ``x = x0 + dx``.

    This requires that ``x0`` be available before and after the call
    to LSQR.  To judge the benefits, suppose LSQR takes k1 iterations
    to solve A@x = b and k2 iterations to solve A@dx = r0.
    If x0 is "good", norm(r0) will be smaller than norm(b).
    If the same stopping tolerances atol and btol are used for each
    system, k1 and k2 will be similar, but the final solution x0 + dx
    should be more accurate.  The only way to reduce the total work
    is to use a larger stopping tolerance for the second system.
    If some value btol is suitable for A@x = b, the larger value
    btol*norm(b)/norm(r0)  should be suitable for A@dx = r0.

    Preconditioning is another way to reduce the number of iterations.
    If it is possible to solve a related system ``M@x = b``
    efficiently, where M approximates A in some helpful way (e.g. M -
    A has low rank or its elements are small relative to those of A),
    LSQR may converge more rapidly on the system ``A@M(inverse)@z =
    b``, after which x can be recovered by solving M@x = z.

    If A is symmetric, LSQR should not be used!

    Alternatives are the symmetric conjugate-gradient method (cg)
    and/or SYMMLQ.  SYMMLQ is an implementation of symmetric cg that
    applies to any symmetric A and will converge more rapidly than
    LSQR.  If A is positive definite, there are other implementations
    of symmetric cg that require slightly less work per iteration than
    SYMMLQ (but will take the same number of iterations).

    References
    ----------
    .. [1] C. C. Paige and M. A. Saunders (1982a).
           "LSQR: An algorithm for sparse linear equations and
           sparse least squares", ACM TOMS 8(1), 43-71.
    .. [2] C. C. Paige and M. A. Saunders (1982b).
           "Algorithm 583.  LSQR: Sparse linear equations and least
           squares problems", ACM TOMS 8(2), 195-209.
    .. [3] M. A. Saunders (1995).  "Solution of sparse rectangular
           systems using LSQR and CRAIG", BIT 35, 588-604.

    Examples
    --------
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import lsqr
    >>> A = csc_matrix([[1., 0.], [1., 1.], [0., 1.]], dtype=float)

    The first example has the trivial solution `[0, 0]`

    >>> b = np.array([0., 0., 0.], dtype=float)
    >>> x, istop, itn, normr = lsqr(A, b)[:4]
    >>> istop
    0
    >>> x
    array([ 0.,  0.])

    The stopping code `istop=0` returned indicates that a vector of zeros was
    found as a solution. The returned solution `x` indeed contains `[0., 0.]`.
    The next example has a non-trivial solution:

    >>> b = np.array([1., 0., -1.], dtype=float)
    >>> x, istop, itn, r1norm = lsqr(A, b)[:4]
    >>> istop
    1
    >>> x
    array([ 1., -1.])
    >>> itn
    1
    >>> r1norm
    4.440892098500627e-16

    As indicated by `istop=1`, `lsqr` found a solution obeying the tolerance
    limits. The given solution `[1., -1.]` obviously solves the equation. The
    remaining return values include information about the number of iterations
    (`itn=1`) and the remaining difference of left and right side of the solved
    equation.
    The final example demonstrates the behavior in the case where there is no
    solution for the equation:

    >>> b = np.array([1., 0.01, -1.], dtype=float)
    >>> x, istop, itn, r1norm = lsqr(A, b)[:4]
    >>> istop
    2
    >>> x
    array([ 1.00333333, -0.99666667])
    >>> A.dot(x)-b
    array([ 0.00333333, -0.00333333,  0.00333333])
    >>> r1norm
    0.005773502691896255

    `istop` indicates that the system is inconsistent and thus `x` is rather an
    approximate solution to the corresponding least-squares problem. `r1norm`
    contains the norm of the minimal residual that was found.
    """
    A = aslinearoperator(A)
    b = np.atleast_1d(b)
    if b.ndim > 1:
        b = b.squeeze()

    m, n = A.shape
    if iter_lim is None:
        iter_lim = 2 * n
    var = np.zeros(n)

    msg = ('The exact solution is  x = 0                              ',
           'Ax - b is small enough, given atol, btol                  ',
           'The least-squares solution is good enough, given atol     ',
           'The estimate of cond(Abar) has exceeded conlim            ',
           'Ax - b is small enough for this machine                   ',
           'The least-squares solution is good enough for this machine',
           'Cond(Abar) seems to be too large for this machine         ',
           'The iteration limit has been reached                      ')

    if show:
        print(' ')
        print('LSQR            Least-squares solution of  Ax = b')
        str1 = f'The matrix A has {m} rows and {n} columns'
        str2 = 'damp = %20.14e   calc_var = %8g' % (damp, calc_var)
        str3 = 'atol = %8.2e                 conlim = %8.2e' % (atol, conlim)
        str4 = 'btol = %8.2e               iter_lim = %8g' % (btol, iter_lim)
        print(str1)
        print(str2)
        print(str3)
        print(str4)

    itn = 0
    istop = 0
    ctol = 0
    if conlim > 0:
        ctol = 1 / conlim
    anorm = 0
    acond = 0
    dampsq = damp**2
    ddnorm = 0
    res2 = 0
    xnorm = 0
    xxnorm = 0
    z = 0
    cs2 = -1
    sn2 = 0

    # Set up the first vectors u and v for the bidiagonalization.
    # These satisfy  beta*u = b - A@x,  alfa*v = A'@u.
    u = b
    bnorm = np.linalg.norm(b)

    if x0 is None:
        x = np.zeros(n)
        beta = bnorm.copy()
    else:
        x = np.asarray(x0)
        u = u - A.matvec(x)
        beta = np.linalg.norm(u)

    if beta > 0:
        u = (1 / beta) * u
        v = A.rmatvec(u)
        alfa = np.linalg.norm(v)
    else:
        v = x.copy()
        alfa = 0

    if alfa > 0:
        v = (1 / alfa) * v
    w = v.copy()

    rhobar = alfa
    phibar = beta
    rnorm = beta
    r1norm = rnorm
    r2norm = rnorm

    # Reverse the order here from the original matlab code because
    # there was an error on return when arnorm==0
    arnorm = alfa * beta
    if arnorm == 0:
        if show:
            print(msg[0])
        return x, istop, itn, r1norm, r2norm, anorm, acond, arnorm, xnorm, var

    head1 = '   Itn      x[0]       r1norm     r2norm '
    head2 = ' Compatible    LS      Norm A   Cond A'

    if show:
        print(' ')
        print(head1, head2)
        test1 = 1
        test2 = alfa / beta
        str1 = '%6g %12.5e' % (itn, x[0])
        str2 = ' %10.3e %10.3e' % (r1norm, r2norm)
        str3 = '  %8.1e %8.1e' % (test1, test2)
        print(str1, str2, str3)

    # Main iteration loop.
    while itn < iter_lim:
        itn = itn + 1
        # Perform the next step of the bidiagonalization to obtain the
        # next  beta, u, alfa, v. These satisfy the relations
        #     beta*u  =  a@v   -  alfa*u,
        #     alfa*v  =  A'@u  -  beta*v.
        u = A.matvec(v) - alfa * u
        beta = np.linalg.norm(u)

        if beta > 0:
            u = (1 / beta) * u
            anorm = sqrt(anorm**2 + alfa**2 + beta**2 + dampsq)
            v = A.rmatvec(u) - beta * v
            alfa = np.linalg.norm(v)
            if alfa > 0:
                v = (1 / alfa) * v

        # Use a plane rotation to eliminate the damping parameter.
        # This alters the diagonal (rhobar) of the lower-bidiagonal matrix.
        if damp > 0:
            rhobar1 = sqrt(rhobar**2 + dampsq)
            cs1 = rhobar / rhobar1
            sn1 = damp / rhobar1
            psi = sn1 * phibar
            phibar = cs1 * phibar
        else:
            # cs1 = 1 and sn1 = 0
            rhobar1 = rhobar
            psi = 0.

        # Use a plane rotation to eliminate the subdiagonal element (beta)
        # of the lower-bidiagonal matrix, giving an upper-bidiagonal matrix.
        cs, sn, rho = _sym_ortho(rhobar1, beta)

        theta = sn * alfa
        rhobar = -cs * alfa
        phi = cs * phibar
        phibar = sn * phibar
        tau = sn * phi

        # Update x and w.
        t1 = phi / rho
        t2 = -theta / rho
        dk = (1 / rho) * w

        x = x + t1 * w
        w = v + t2 * w
        ddnorm = ddnorm + np.linalg.norm(dk)**2

        if calc_var:
            var = var + dk**2

        # Use a plane rotation on the right to eliminate the
        # super-diagonal element (theta) of the upper-bidiagonal matrix.
        # Then use the result to estimate norm(x).
        delta = sn2 * rho
        gambar = -cs2 * rho
        rhs = phi - delta * z
        zbar = rhs / gambar
        xnorm = sqrt(xxnorm + zbar**2)
        gamma = sqrt(gambar**2 + theta**2)
        cs2 = gambar / gamma
        sn2 = theta / gamma
        z = rhs / gamma
        xxnorm = xxnorm + z**2

        # Test for convergence.
        # First, estimate the condition of the matrix  Abar,
        # and the norms of  rbar  and  Abar'rbar.
        acond = anorm * sqrt(ddnorm)
        res1 = phibar**2
        res2 = res2 + psi**2
        rnorm = sqrt(res1 + res2)
        arnorm = alfa * abs(tau)

        # Distinguish between
        #    r1norm = ||b - Ax|| and
        #    r2norm = rnorm in current code
        #           = sqrt(r1norm^2 + damp^2*||x - x0||^2).
        #    Estimate r1norm from
        #    r1norm = sqrt(r2norm^2 - damp^2*||x - x0||^2).
        # Although there is cancellation, it might be accurate enough.
        if damp > 0:
            r1sq = rnorm**2 - dampsq * xxnorm
            r1norm = sqrt(abs(r1sq))
            if r1sq < 0:
                r1norm = -r1norm
        else:
            r1norm = rnorm
        r2norm = rnorm

        # Now use these norms to estimate certain other quantities,
        # some of which will be small near a solution.
        test1 = rnorm / bnorm
        test2 = arnorm / (anorm * rnorm + eps)
        test3 = 1 / (acond + eps)
        t1 = test1 / (1 + anorm * xnorm / bnorm)
        rtol = btol + atol * anorm * xnorm / bnorm

        # The following tests guard against extremely small values of
        # atol, btol  or  ctol.  (The user may have set any or all of
        # the parameters  atol, btol, conlim  to 0.)
        # The effect is equivalent to the normal tests using
        # atol = eps,  btol = eps,  conlim = 1/eps.
        if itn >= iter_lim:
            istop = 7
        if 1 + test3 <= 1:
            istop = 6
        if 1 + test2 <= 1:
            istop = 5
        if 1 + t1 <= 1:
            istop = 4

        # Allow for tolerances set by the user.
        if test3 <= ctol:
            istop = 3
        if test2 <= atol:
            istop = 2
        if test1 <= rtol:
            istop = 1

        if show:
            # See if it is time to print something.
            prnt = False
            if n <= 40:
                prnt = True
            if itn <= 10:
                prnt = True
            if itn >= iter_lim - 10:
                prnt = True
            # if itn%10 == 0: prnt = True
            if test3 <= 2 * ctol:
                prnt = True
            if test2 <= 10 * atol:
                prnt = True
            if test1 <= 10 * rtol:
                prnt = True
            if istop != 0:
                prnt = True

            if prnt:
                str1 = '%6g %12.5e' % (itn, x[0])
                str2 = ' %10.3e %10.3e' % (r1norm, r2norm)
                str3 = '  %8.1e %8.1e' % (test1, test2)
                str4 = ' %8.1e %8.1e' % (anorm, acond)
                print(str1, str2, str3, str4)

        if istop != 0:
            break

    # End of iteration loop.
    # Print the stopping condition.
    if show:
        print(' ')
        print('LSQR finished')
        print(msg[istop])
        print(' ')
        str1 = 'istop =%8g   r1norm =%8.1e' % (istop, r1norm)
        str2 = 'anorm =%8.1e   arnorm =%8.1e' % (anorm, arnorm)
        str3 = 'itn   =%8g   r2norm =%8.1e' % (itn, r2norm)
        str4 = 'acond =%8.1e   xnorm  =%8.1e' % (acond, xnorm)
        print(str1 + '   ' + str2)
        print(str3 + '   ' + str4)
        print(' ')

    return x, istop, itn, r1norm, r2norm, anorm, acond, arnorm, xnorm, var
Exemplo n.º 17
0
 def testComplexB(self):
     A = 4 * eye(self.n) + ones((self.n, self.n))
     xtrue = transpose(arange(self.n, 0, -1) * (1 + 1j))
     b = aslinearoperator(A).matvec(xtrue)
     x = lsmr(A, b)[0]
     assert norm(x - xtrue) == pytest.approx(0, abs=1e-5)