Exemplo n.º 1
0
    def resize(self, *shape):
        shape = check_shape(shape)
        if hasattr(self, 'blocksize'):
            bm, bn = self.blocksize
            new_M, rm = divmod(shape[0], bm)
            new_N, rn = divmod(shape[1], bn)
            if rm or rn:
                raise ValueError("shape must be divisible into %s blocks. "
                                 "Got %s" % (self.blocksize, shape))
            M, N = self.shape[0] // bm, self.shape[1] // bn
        else:
            new_M, new_N = self._swap(shape)
            M, N = self._swap(self.shape)

        if new_M < M:
            self.indices = self.indices[:self.indptr[new_M]]
            self.data = self.data[:self.indptr[new_M]]
            self.indptr = self.indptr[:new_M + 1]
        elif new_M > M:
            self.indptr = np.resize(self.indptr, new_M + 1)
            self.indptr[M + 1:].fill(self.indptr[M])

        if new_N < N:
            mask = self.indices < new_N
            if not np.all(mask):
                self.indices = self.indices[mask]
                self.data = self.data[mask]
                major_index, val = self._minor_reduce(np.add, mask)
                self.indptr.fill(0)
                self.indptr[1:][major_index] = val
                np.cumsum(self.indptr, out=self.indptr)

        self._shape = shape
Exemplo n.º 2
0
    def _set_self(self, other, copy=False):
        """take the member variables of other and assign them to self"""

        if copy:
            other = other.copy()

        self.data = other.data
        self.indices = other.indices
        self.indptr = other.indptr
        self._shape = check_shape(other.shape)
Exemplo n.º 3
0
 def test_check_shape_overflow(self):
     new_shape = sputils.check_shape([(10, -1)], (65535, 131070))
     assert_equal(new_shape, (10, 858967245))
Exemplo n.º 4
0
    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        _data_matrix.__init__(self)

        if isspmatrix(arg1):
            if arg1.format == self.format and copy:
                arg1 = arg1.copy()
            else:
                arg1 = arg1.asformat(self.format)
            self._set_self(arg1)

        elif isinstance(arg1, tuple):
            if isshape(arg1):
                # It's a tuple of matrix dimensions (M, N)
                # create empty matrix
                self._shape = check_shape(arg1)
                M, N = self.shape
                # Select index dtype large enough to pass array and
                # scalar parameters to sparsetools
                idx_dtype = get_index_dtype(maxval=max(M, N))
                self.data = np.zeros(0, getdtype(dtype, default=float))
                self.indices = np.zeros(0, idx_dtype)
                self.indptr = np.zeros(self._swap((M, N))[0] + 1,
                                       dtype=idx_dtype)
            else:
                if len(arg1) == 2:
                    # (data, ij) format
                    from scipy.sparse.coo import coo_matrix
                    other = self.__class__(coo_matrix(arg1, shape=shape))
                    self._set_self(other)
                elif len(arg1) == 3:
                    # (data, indices, indptr) format
                    (data, indices, indptr) = arg1

                    # Select index dtype large enough to pass array and
                    # scalar parameters to sparsetools
                    maxval = None
                    if shape is not None:
                        maxval = max(shape)
                    idx_dtype = get_index_dtype((indices, indptr),
                                                maxval=maxval,
                                                check_contents=True)

                    self.indices = np.array(indices,
                                            copy=copy,
                                            dtype=idx_dtype)
                    self.indptr = np.array(indptr, copy=copy, dtype=idx_dtype)
                    self.data = np.array(data, copy=copy, dtype=dtype)
                else:
                    raise ValueError("unrecognized {}_matrix "
                                     "constructor usage".format(self.format))

        else:
            # must be dense
            try:
                arg1 = np.asarray(arg1)
            except Exception:
                raise ValueError("unrecognized {}_matrix constructor usage"
                                 "".format(self.format))
            from scipy.sparse.coo import coo_matrix
            self._set_self(self.__class__(coo_matrix(arg1, dtype=dtype)))

        # Read matrix dimensions given, if any
        if shape is not None:
            self._shape = check_shape(shape)
        else:
            if self.shape is None:
                # shape not already set, try to infer dimensions
                try:
                    major_dim = len(self.indptr) - 1
                    minor_dim = self.indices.max() + 1
                except Exception:
                    raise ValueError('unable to infer matrix dimensions')
                else:
                    self._shape = check_shape(
                        self._swap((major_dim, minor_dim)))

        if dtype is not None:
            self.data = self.data.astype(dtype, copy=False)

        self.check_format(full_check=False)