Exemplo n.º 1
0
 def cdf(self, val):
     return stdtr(self.df, (val - self.mu) / self.scale)
Exemplo n.º 2
0
avar = float(40)**2 * (na / adof)

nb = float(100)
bdof = nb - 1
bbar = float(190)
bvar = float(20)**2 * (nb / bdof)

# Use scipy.stats.ttest_ind_from_stats.
t2, p2 = ttest_ind_from_stats(abar,
                              sqrt(avar),
                              na,
                              bbar,
                              sqrt(bvar),
                              nb,
                              equal_var=False)
print("ttest_ind_from_stats: t = %g  p = %g" % (t2, p2))

# Use the formulas directly.
tf = (abar - bbar - 7) / sqrt(avar / na + bvar / nb)
dof = (avar / na + bvar / nb)**2 / (avar**2 / (na**2 * adof) + bvar**2 /
                                    (nb**2 * bdof))

#calculating p value of P(T > tf)
pval = stdtr(dof, abs(tf))

print 't = %f p = %f dof = %f' % (tf, pval, dof)
if pval < significance:
    print('It is unlikely to except null hypothesis!')
else:
    print('Null hypothesis cannot be rejected!')