Exemplo n.º 1
0
from scipy.stats import invweibull
from scipy.stats import burr
from random import randint


secondsInHour = 60.0*60.0
c = 5.8
x = np.linspace(invweibull.ppf(0.01, c),invweibull.ppf(0.99,c),720)
arr = invweibull.pdf(x, c)
q = arr*10
q = np.round(q)
q = q.astype(int)

c = 5.9
d = 1.4
x = np.linspace(burr.ppf(0.01, c,d),burr.ppf(0.99,c,d),900)
arr = burr.pdf(x, c,d)
b = arr*10
b = np.round(b)
b = b.astype(int)





edges = ['D1 D4', 'D1  D3', 'D7  D5', 'D7 D2', 'D8 D5', 'D8 D2', 'D6 D3', 'D6 D4', 'D7  D4', 'D8 D3', 'D6 D5', 'D1 D2']

	
with open('rl.invw.rou.xml', 'w') as routes:
		routes.write("""<?xml version="1.0"?>""" + '\n' + '\n')
		routes.write("""<routes xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/routes_file.xsd">""" + '\n')
#And compare the histogram:
ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
ax.legend(loc='best', frameon=False)
plt.show()

#burr Continuous distributions¶
from scipy.stats import burr
import matplotlib.pyplot as plt
import numpy as np

fig, ax = plt.subplots(1, 1)
#Calculate a few first moments:
c, d = 10.5, 4.3
mean, var, skew, kurt = burr.stats(c, d, moments='mvsk')
#Display the probability density function (pdf):
x = np.linspace(burr.ppf(0.01, c, d), burr.ppf(0.99, c, d), 100)
ax.plot(x, burr.pdf(x, c, d), 'r-', lw=5, alpha=0.6, label='burr pdf')
#Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
#Freeze the distribution and display the frozen pdf:
rv = burr(c, d)
ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
#Check accuracy of cdf and ppf:
vals = burr.ppf([0.001, 0.5, 0.999], c, d)
np.allclose([0.001, 0.5, 0.999], burr.cdf(vals, c, d))
True
#Generate random numbers:
r = burr.rvs(c, d, size=1000)
#And compare the histogram:
ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
ax.legend(loc='best', frameon=False)
plt.show()