Exemplo n.º 1
0
def Cauchy_Entropy(w0, l0, w1, l1):
    if w0 == 0 and l0 == 0:
        x0 = 0.5
    else:
        x0 = w0/(w0 + l0)    # Mode of beta
    sig0 = np.sqrt( (w0+1)*(l0+1)/( (w0+l0+2)**2 * (w0+l0+3) ) )    # Std of beta
    if w1 == 0 and l1 ==0:
        x1 = 0.5
    else:
        x1 = w1/(w1 + l1)
    sig1 = np.sqrt( (w1+1)*(l1+1)/( (w1+l1+2)**2 * (w1+l1+3) ) )

    global MC_samples
    seq.reset()
    x = seq.get(MC_samples)
    x = np.reshape(x, MC_samples)

    pdf0 = cauchy.pdf(x, x0, sig0)
    pdf1 = cauchy.pdf(x, x1, sig1)
    cdf0 = cauchy.cdf(x, x0, sig0)
    cdf1 = cauchy.cdf(x, x1, sig1)

    rho = pdf0 * cdf1 + pdf1 * cdf0
    integral = np.mean( -rho * np.log( rho ) )

    return integral
Exemplo n.º 2
0
def cauchy_distribution(select_size, asked=rvs, x=0):
    if asked == rvs:
        return cauchy.rvs(size=select_size)
    elif asked == pdf:
        return cauchy.pdf(x)
    elif asked == cdf:
        return cauchy.cdf(x)
Exemplo n.º 3
0
def distribution_function(x, mu, sigma, distribution):
    if distribution == Distribution.NORMAL:
        return norm.cdf(x, mu, sigma)
    elif distribution == Distribution.CAUCHY:
        return cauchy.cdf(x, mu, sigma)
    elif distribution == Distribution.LAPLACE:
        return laplace.cdf(x, mu, sigma)
    elif distribution == Distribution.POISSON:
        return poisson.cdf(x, mu, sigma)
    elif distribution == Distribution.UNIFORM:
        return uniform.cdf(x, mu, sigma)
    else:
        return None
Exemplo n.º 4
0
 def cdf(self, x, df):
     return cauchy.cdf(x, self.loc, self.scl)
Exemplo n.º 5
0
# prior constraints:
# smooth, median(theta)=0, mode(theta)=1, theta can be (-inf,1),(-1,0),(0,1),(1,inf) with p=0.25

# taking a gaussian prior which satisfies the above constraints
prior_var = 2.19
prior_mu = 0
prior_std = math.sqrt(prior_var)
p_range = norm.cdf(1, prior_mu, prior_std) - norm.cdf(-1, prior_mu, prior_std)
assert np.allclose(p_range, 0.5, 1e-2)

# Computing posterior mean using gaussian prior
post_var = 1 / (1 / obs_var + 1 / prior_var)
post_mean = post_var * (prior_mu / prior_var + obs_x / obs_var)

assert np.allclose(post_mean, 3.43, 1e-2)

# taking a cauchy prior which satisfies the above constraints
loc = 0
scale = 1
p_range = cauchy.cdf(1, loc, scale) - cauchy.cdf(-1, loc, scale)
assert np.allclose(p_range, 0.5, 1e-2)

# Computing posterior mean using cauchy prior
inf = 5.2
lik = lambda theta: norm.pdf(obs_x, theta, obs_std)
prior = lambda theta: cauchy.pdf(obs_x, theta, obs_std)
post = lambda theta: lik(theta) * prior(theta)
Z = integrate.quad(post, -inf, inf)[0]
post_mean = integrate.quad(lambda theta: theta * post(theta) / Z, -inf, inf)[0]
assert np.allclose(post_mean, 4.56, 1e-2)
Exemplo n.º 6
0
 def func(self, x):
     return cauchy.cdf(x, loc=self.mu, scale=self.sigma)
Exemplo n.º 7
0
 def __call__(self, x, loc=0, scale=1):
     return cauchy.cdf(x, loc=loc, scale=scale)
Exemplo n.º 8
0
# Display the probability density function (``pdf``):

x = np.linspace(cauchy.ppf(0.01), cauchy.ppf(0.99), 100)
ax.plot(x, cauchy.pdf(x), 'r-', lw=5, alpha=0.6, label='cauchy pdf')

# Alternatively, the distribution object can be called (as a function)
# to fix the shape, location and scale parameters. This returns a "frozen"
# RV object holding the given parameters fixed.

# Freeze the distribution and display the frozen ``pdf``:

rv = cauchy()
ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

# Check accuracy of ``cdf`` and ``ppf``:

vals = cauchy.ppf([0.001, 0.5, 0.999])
np.allclose([0.001, 0.5, 0.999], cauchy.cdf(vals))
# True

# Generate random numbers:

r = cauchy.rvs(size=1000)

# And compare the histogram:

ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
ax.legend(loc='best', frameon=False)
plt.show()
Exemplo n.º 9
0
def main():
    usage = 'usage: %prog [options] arg'
    parser = OptionParser(usage)
    parser.add_option('-o', dest='out_dir', default='sad_norm')
    parser.add_option(
        '-s',
        dest='sample',
        default=100000,
        type='int',
        help='Number of SNPs to sample for fit [Default: %default]')
    (options, args) = parser.parse_args()

    if len(args) != 1:
        parser.error('Must provide SAD HDF5 path')
    else:
        sad_h5_path = args[0]

    # retrieve chromosome SAD HDF5 files
    chr_sad_h5_files = sorted(glob.glob('%s/*/sad.h5' % sad_h5_path))
    assert (len(chr_sad_h5_files) > 0)

    # clean out any existing fits
    # count SNPs across chromosomes
    num_snps = 0
    for chr_sad_h5_file in chr_sad_h5_files:
        chr_sad_h5 = h5py.File(chr_sad_h5_file, 'r+')

        # delete fit params
        if 'target_cauchy_fit_loc' in chr_sad_h5.keys():
            del chr_sad_h5['target_cauchy_fit_loc']
            del chr_sad_h5['target_cauchy_fit_scale']

        # delete norm params
        if 'target_cauchy_norm_loc' in chr_sad_h5.keys():
            del chr_sad_h5['target_cauchy_norm_loc']
            del chr_sad_h5['target_cauchy_norm_scale']

        # count SNPs
        num_snps += chr_sad_h5['SAD'].shape[0]
        num_targets = chr_sad_h5['SAD'].shape[-1]

        chr_sad_h5.close()

    # sample SNPs across chromosomes
    sad = sample_sad(chr_sad_h5_files, options.sample, num_snps, num_targets)

    # initialize fit parameters
    target_cauchy_fit_loc = np.zeros(num_targets)
    target_cauchy_fit_scale = np.zeros(num_targets)

    # fit parameters
    for ti in range(num_targets):
        print('Fitting t%d' % ti, flush=True)
        cp = cauchy.fit(sad[:, ti])
        target_cauchy_fit_loc[ti] = cp[0]
        target_cauchy_fit_scale[ti] = cp[1]
    del sad

    # write across chromosomes
    for chr_sad_h5_file in chr_sad_h5_files:
        chr_sad_h5 = h5py.File(chr_sad_h5_file, 'r+')
        chr_sad_h5.create_dataset('target_cauchy_fit_loc',
                                  data=target_cauchy_fit_loc)
        chr_sad_h5.create_dataset('target_cauchy_fit_scale',
                                  data=target_cauchy_fit_scale)
        chr_sad_h5.close()

    # compute normalization parameters
    for chr_sad_h5_file in chr_sad_h5_files:
        chr_sad5 = SAD5(chr_sad_h5_file)

    # QC fit table
    if not os.path.isdir(options.out_dir):
        os.mkdir(options.out_dir)
    fit_out = open('%s/fits.txt' % options.out_dir, 'w')
    for ti in range(num_targets):
        print('%-4d  %7.1e  %7.1e' %
              (ti, target_cauchy_fit_loc[ti], target_cauchy_fit_scale[ti]),
              file=fit_out)
    fit_out.close()

    # QC quantiles
    quantile_dir = '%s/quantiles' % options.out_dir
    if not os.path.isdir(quantile_dir):
        os.mkdir(quantile_dir)
    sad_qc = sample_sad(chr_sad_h5_files, 2048, num_snps, num_targets)
    for ti in np.linspace(0, num_targets - 1, 64, dtype='int'):
        # compute cauchy and argsort quantiles
        cauchy_q = cauchy.cdf(sad_qc[:, ti],
                              loc=target_cauchy_fit_loc[ti],
                              scale=target_cauchy_fit_scale[ti])
        sort_i = np.argsort(sad_qc[:, ti])

        quantile_pdf = '%s/t%d.pdf' % (quantile_dir, ti)

        jointplot(np.linspace(0, 1, len(sort_i)),
                  cauchy_q[sort_i],
                  quantile_pdf,
                  square=True,
                  cor=None,
                  x_label='Empirical',
                  y_label='Cauchy')

    # QC plots
    norm_dir = '%s/norm' % options.out_dir
    if not os.path.isdir(norm_dir):
        os.mkdir(norm_dir)
    chr_sad5 = SAD5(chr_sad_h5_files[0])
    qc_sample = 2048
    if qc_sample < chr_sad5.num_snps:
        ri = sorted(
            np.random.choice(np.arange(chr_sad5.num_snps),
                             size=qc_sample,
                             replace=False))
    else:
        ri = np.arange(chr_sad5.num_snps)
    qc_sad_raw = chr_sad5.sad_matrix[ri]
    qc_sad_norm = chr_sad5[ri]
    for ti in np.linspace(0, num_targets - 1, 32, dtype='int'):
        plt.figure()
        sns.jointplot(qc_sad_raw[:, ti],
                      qc_sad_norm[:, ti],
                      joint_kws={
                          'alpha': 0.5,
                          's': 10
                      })
        plt.savefig('%s/t%d.pdf' % (norm_dir, ti))
        plt.close()
Exemplo n.º 10
0
ax[2].plot(x3, laplace.cdf(x3, 0, sqrt(2)))
ax[2].hist(r3,
           density=True,
           bins=floor(len(r3)),
           histtype='step',
           cumulative=True)
ax[2].set_xlabel('x')
ax[2].set_title('Распределение Лапласа, n=100')

#plt.show()#Лапласа

fig2, ay = plt.subplots(1, 3)
r = cauchy.rvs(size=20)
y = np.linspace(min(cauchy.ppf(0.01), min(r)), max(cauchy.ppf(0.99), max(r)),
                100)
ay[0].plot(y, cauchy.cdf(y, 0, 1))
ay[0].hist(r,
           density=True,
           bins=floor(len(r)),
           histtype='step',
           cumulative=True)
ay[0].set_xlabel('x')
ay[0].set_title('Распределение Коши, n=20')

r2 = cauchy.rvs(size=60)
y2 = np.linspace(min(cauchy.ppf(0.01), min(r2)), max(cauchy.ppf(0.99),
                                                     max(r2)), 100)
ay[1].plot(y2, cauchy.cdf(y2, 0, 1))
ay[1].hist(r2,
           density=True,
           bins=floor(len(r2)),
Exemplo n.º 11
0
def main():
    usage = "usage: %prog [options] arg"
    parser = OptionParser(usage)
    parser.add_option("-o", dest="out_dir", default="sad_norm")
    parser.add_option(
        "-s",
        dest="sample",
        default=100000,
        type="int",
        help="Number of SNPs to sample for fit [Default: %default]",
    )
    (options, args) = parser.parse_args()

    if len(args) != 1:
        parser.error("Must provide SAD HDF5 path")
    else:
        sad_h5_path = args[0]

    # retrieve chromosome SAD HDF5 files
    chr_sad_h5_files = sorted(glob.glob("%s/*/sad.h5" % sad_h5_path))
    assert len(chr_sad_h5_files) > 0

    # clean out any existing fits
    # count SNPs across chromosomes
    num_snps = 0
    for chr_sad_h5_file in chr_sad_h5_files:
        chr_sad_h5 = h5py.File(chr_sad_h5_file, "r+")

        # delete fit params
        if "target_cauchy_fit_loc" in chr_sad_h5.keys():
            del chr_sad_h5["target_cauchy_fit_loc"]
            del chr_sad_h5["target_cauchy_fit_scale"]

        # delete norm params
        if "target_cauchy_norm_loc" in chr_sad_h5.keys():
            del chr_sad_h5["target_cauchy_norm_loc"]
            del chr_sad_h5["target_cauchy_norm_scale"]

        # count SNPs
        num_snps += chr_sad_h5["SAD"].shape[0]
        num_targets = chr_sad_h5["SAD"].shape[-1]

        chr_sad_h5.close()

    # sample SNPs across chromosomes
    sad = sample_sad(chr_sad_h5_files, options.sample, num_snps, num_targets)

    # initialize fit parameters
    target_cauchy_fit_loc = np.zeros(num_targets)
    target_cauchy_fit_scale = np.zeros(num_targets)

    # fit parameters
    for ti in range(num_targets):
        print("Fitting t%d" % ti, flush=True)
        cp = cauchy.fit(sad[:, ti])
        target_cauchy_fit_loc[ti] = cp[0]
        target_cauchy_fit_scale[ti] = cp[1]
    del sad

    # write across chromosomes
    for chr_sad_h5_file in chr_sad_h5_files:
        chr_sad_h5 = h5py.File(chr_sad_h5_file, "r+")
        chr_sad_h5.create_dataset("target_cauchy_fit_loc", data=target_cauchy_fit_loc)
        chr_sad_h5.create_dataset(
            "target_cauchy_fit_scale", data=target_cauchy_fit_scale
        )
        chr_sad_h5.close()

    # compute normalization parameters
    for chr_sad_h5_file in chr_sad_h5_files:
        chr_sad5 = SAD5(chr_sad_h5_file)

    # QC fit table
    if not os.path.isdir(options.out_dir):
        os.mkdir(options.out_dir)
    fit_out = open("%s/fits.txt" % options.out_dir, "w")
    for ti in range(num_targets):
        print(
            "%-4d  %7.1e  %7.1e"
            % (ti, target_cauchy_fit_loc[ti], target_cauchy_fit_scale[ti]),
            file=fit_out,
        )
    fit_out.close()

    # QC quantiles
    quantile_dir = "%s/quantiles" % options.out_dir
    if not os.path.isdir(quantile_dir):
        os.mkdir(quantile_dir)
    sad_qc = sample_sad(chr_sad_h5_files, 2048, num_snps, num_targets)
    for ti in np.linspace(0, num_targets - 1, 64, dtype="int"):
        # compute cauchy and argsort quantiles
        cauchy_q = cauchy.cdf(
            sad_qc[:, ti],
            loc=target_cauchy_fit_loc[ti],
            scale=target_cauchy_fit_scale[ti],
        )
        sort_i = np.argsort(sad_qc[:, ti])

        quantile_pdf = "%s/t%d.pdf" % (quantile_dir, ti)

        jointplot(
            np.linspace(0, 1, len(sort_i)),
            cauchy_q[sort_i],
            quantile_pdf,
            square=True,
            cor=None,
            x_label="Empirical",
            y_label="Cauchy",
        )

    # QC plots
    norm_dir = "%s/norm" % options.out_dir
    if not os.path.isdir(norm_dir):
        os.mkdir(norm_dir)
    chr_sad5 = SAD5(chr_sad_h5_files[0])
    qc_sample = 2048
    if qc_sample < chr_sad5.num_snps:
        ri = sorted(
            np.random.choice(
                np.arange(chr_sad5.num_snps), size=qc_sample, replace=False
            )
        )
    else:
        ri = np.arange(chr_sad5.num_snps)
    qc_sad_raw = chr_sad5.sad_matrix[ri]
    qc_sad_norm = chr_sad5[ri]
    for ti in np.linspace(0, num_targets - 1, 32, dtype="int"):
        plt.figure()
        sns.jointplot(
            qc_sad_raw[:, ti], qc_sad_norm[:, ti], joint_kws={"alpha": 0.5, "s": 10}
        )
        plt.savefig("%s/t%d.pdf" % (norm_dir, ti))
        plt.close()
Exemplo n.º 12
0
font = ImageFont.truetype(font_loc, 12)
one_sided = False
for i in range(17):
    ix = zigzag2(i, 0, 10)
    im = Image.new("RGB", (512, 512), "black")
    draw = ImageDraw.Draw(im, 'RGBA')

    if one_sided:
        fn = lambda x: 300 - norm.cdf(x, 250, std) * 100
    else:
        fn_tmp = lambda x: min(norm.cdf(x, 250, std), norm.sf(x, 250, std))
        fn = lambda x: 300 - (fn_tmp(x)) * 200
    draw_curve(fn, draw, rgba=(255, 165, 0))

    if one_sided:
        fn1 = lambda x: 300 - cauchy.cdf(x, 250, std) * 100
    else:
        fn_tmp1 = lambda x: min(cauchy.cdf(x, 250, std), cauchy.sf(
            x, 250, std))
        fn1 = lambda x: 300 - (fn_tmp1(x)) * 200
    draw_curve(fn1, draw, rgba=(222, 49, 99))

    draw.line((250, 200, 250, 300), "white")
    draw.line((0, 300, 512, 300), "yellow")
    y1 = 300
    x1 = 50 + ix / 10 * (450 - 50)
    draw.ellipse((x1 - 3, y1 - 3, x1 + 3, y1 + 3),
                 outline=(255, 255, 0),
                 fill=(255, 255, 0, 150))
    x2 = 250
    y1 = fn(x1)
Exemplo n.º 13
0
from scipy.stats import cauchy
print(cauchy.cdf(2,3,3))
Exemplo n.º 14
0
ax[1][2].legend()

plt.show()#Лапласа

fig2, ay = plt.subplots(2, 3)
r = cauchy.rvs(size=10)
y = np.linspace(min(cauchy.ppf(0.01),min(r)), max(cauchy.ppf(0.99),max(r)), 100)
ay[0][0].plot(y, cauchy.pdf(y,0,1), label='теор.')
ay[0][0].set_title('Распределение Коши, n=10')
ay[0][0].hist(r, density=True, bins=floor(sqrt(len(r))),histtype='step',label='практ.')
ay[0][0].legend(loc='best', frameon=False)
ay[0][0].set_xlabel('x')
ay[0][0].set_ylabel('Функция плотности')
ay[0][0].legend()

ay[1][0].plot(y, cauchy.cdf(y,0,1), label='теор.')
ay[1][0].hist(r, density=True, bins=floor(sqrt(len(r))),histtype='step',cumulative=True,label='практ.')
ay[1][0].legend(loc='best', frameon=False)
ay[1][0].set_xlabel('x')
ay[1][0].set_ylabel('Функция распределения')
ay[1][0].legend()

r2 = cauchy.rvs(size=100)
y2 = np.linspace(min(cauchy.ppf(0.01),min(r2)), max(cauchy.ppf(0.99),max(r2)), 100)
ay[0][1].plot(y2, cauchy.pdf(y2,0,1), label='теор.')
ay[0][1].set_title('Распределение Коши, n=100')
ay[0][1].hist(r2, density=True, bins=floor(sqrt(len(r2))),histtype='step',label='практ.')
ay[0][1].legend(loc='best', frameon=False)
ay[0][1].set_xlabel('x')
ay[0][1].set_ylabel('Функция плотности')
ay[0][1].legend()