def nc_of_norm():
    f1 = lambda x: x**4
    f2 = lambda x: x**2-x+2
    
    rv = norm(loc = 2 , scale=20)
    print rv.mean()
    print rv.var()
    print rv.moment(1)
    print rv.moment(4)
    #     moments的参数可为m(均值),v(方差值),s(偏度),k(峰度),默认为mv
    print rv.stats(moments = 'mvsk')
# 3)scipy.stats.norm.expect(func,loc=0,scale=1)函数返回func函数相对于正态分布的期望值,其中函数f(x)相对于分布dist的期望值定义为E[x]=Integral(f(x) * dist.pdf(x))
    print(norm.expect(f1, loc=1, scale=2))
    print(norm.expect(f2, loc=2, scale=5))
    
    
    
# (2)lambda argument_list:expression用来表示匿名函数
# (3)numpy.exp(x)计算x的指数
# (4)numpy.inf表示正无穷大
# (5)scipy.integrate.quad(func,a,b)计算func函数从a至b的积分
# (6)scipy.stats.expon(scale)函数返回符合指数分布的参数为scale的随机变量rv
# (7)rv.moment(n,*args,*kwds)返回随机变量的n阶距
        #1st non-center moment of expon distribution whose lambda is 0.5
    E1 = lambda x: x*0.5*np.exp(-x/2)
    #2nd non-center moment of expon distribution whose lambda is 0.5
    E2 = lambda x: x**2*0.5*np.exp(-x/2)
    print(integrate.quad(E1, 0, np.inf))
    print(integrate.quad(E2, 0, np.inf))
 def Atheta_gmm(self, clf, T):
     k, por, mean, std = len(
         clf.weights_), clf.weights_, clf.means_, clf.covariances_
     t = int(T - 2)
     theta = np.zeros(int(T))
     trunc = 0
     re = 0
     for i in range(k):
         trunc = trunc + por[i] * (
             1 - norm.cdf(0, loc=mean[i], scale=np.sqrt(std[i])))
         re = re + por[i] * norm.expect(self.norm_pdfx,
                                        loc=mean[i],
                                        scale=np.sqrt(std[i]),
                                        lb=0,
                                        ub=np.inf)
     theta[int(T - 2)] = re / trunc
     while (t > 0):
         t = t - 1
         re1 = 0
         re2 = 0
         trunc = 0
         for i in range(k):
             trunc = trunc + por[i] * (
                 1 - norm.cdf(0, loc=mean[i], scale=np.sqrt(std[i])))
             re1 = re1 + por[i] * norm.expect(self.norm_pdfx,
                                              loc=mean[i],
                                              scale=np.sqrt(std[i]),
                                              lb=0,
                                              ub=theta[t + 1])
             re2 = re2 + por[i] * theta[t + 1] * (1 - norm.cdf(
                 theta[t + 1], loc=mean[i], scale=np.sqrt(std[i])))
         theta[t] = (re1 + re2) / trunc
     return theta
Exemplo n.º 3
0
def choose(original: Data, pca: Data) -> np.ndarray:
    data_differences = pca.data.sub(original.data)
    mean_diff = data_differences.mean()
    std_diff = data_differences.std()
    latest_data = original.data.iloc[-1]
    latest_pca = pca.data.iloc[-1]
    x = (latest_pca - latest_data)
    #diff = norm.cdf(x, loc=mean_diff, scale=std_diff) - norm.cdf(mean_diff-x, loc=mean_diff, scale=std_diff)
    props = [0] * len(x)
    for i in range(len(x)):
        cur = x[i]
        if cur > mean_diff[i]:
            W = norm.cdf(cur, loc=mean_diff[i], scale=std_diff[i])
            R_num = norm.expect(lambda y: cur - y,
                                loc=100 * mean_diff[i],
                                scale=10000 * std_diff[i],
                                ub=cur)
            R_den = norm.expect(lambda y: y - cur,
                                loc=100 * mean_diff[i],
                                scale=10000 * std_diff[i],
                                lb=cur)
            R = R_num / R_den
            props[i] = W - (1 - W) / R
        elif cur < mean_diff[i]:
            W = 1 - norm.cdf(cur, loc=mean_diff[i], scale=std_diff[i])
            R_num = norm.expect(lambda y: y - cur,
                                loc=100 * mean_diff[i],
                                scale=10000 * std_diff[i],
                                lb=cur)
            R_den = norm.expect(lambda y: cur - y,
                                loc=100 * mean_diff[i],
                                scale=10000 * std_diff[i],
                                ub=cur)
            R = R_num / R_den
            props[i] = -(W - (1 - W) / R)
    """
    for i in range(len(diff)):
        if abs(diff[i]) <= fee:
            diff[i] = 0
    diff = diff/sum(np.absolute(diff))
    if diff[0] > 0:
        diff = [1] + [0]*(len(diff) - 1)
    elif diff[0] < 0:
        diff = [-1] + [0]*(len(diff) - 1)
    else:
        diff = [0]*len(diff)
    """
    props = [props[0]] + [0] * (len(props) - 1)
    return pd.DataFrame(props, index=pca.data.columns)
Exemplo n.º 4
0
def compute_cvar(losses, ci, distribution='normal'):
    """
    CVaR: measures expected loss given a minimum loss equal to the (theoretical) VaR
    :param losses:
    :param ci:
    :return:
    """
    allowed_distributions = ['normal', 'student']
    assert distribution in allowed_distributions, f'distribution should be in : {allowed_distributions}'

    if distribution == allowed_distributions[0]:
        pm, ps = losses.mean(), losses.std()
        var = norm.ppf(ci, loc=pm, scale=ps)
        tail_loss = norm.expect(lambda x: x, loc=pm, scale=ps, lb=var)
    if distribution == allowed_distributions[1]:
        fitted = t.fit(losses)
        var = t.ppf(ci, *fitted)
        tail_loss = t.expect(lambda y: y,
                             args=(fitted[0], ),
                             loc=fitted[1],
                             scale=fitted[2],
                             lb=var)
    cvar = (1 / (1 - ci)) * tail_loss

    return cvar
Exemplo n.º 5
0
    def expected(self, loc=0, sd=1, plot=False):
        #****plugging in change vs percent change not matching up for exp, look for error****
        exp = norm.expect(self.value, loc=loc, lb=0, scale=sd)
        print(exp)

        if (plot):
            plb = max(loc - 12 * sd, 0)
            pub = loc + 12 * sd
            dx = (pub - plb) / 100
            x = np.arange(plb, pub, dx)
            #print (x)
            y1 = norm.pdf(x, loc=loc)
            y2 = []
            y3 = []
            for i in x:
                #print (i)
                y2.append(self.change(i))
            for i in x:
                y3.append(self.value(i))
            plt.subplot(311)
            plt.plot(x, norm.pdf(x, loc))
            plt.subplot(312)
            plt.plot(x, y2)
            plt.subplot(313)
            plt.plot(x, y3)
            plt.show()
        return (exp)
Exemplo n.º 6
0
    def calc_risk(self, confidence=0.95):
        port_returns = self.returns.dot(self.allocation)
        losses = -port_returns.iloc[:, 0]

        params = norm.fit(losses)
        VaR = norm.ppf(confidence, *params)

        tail_loss = norm.expect(lambda x: x,
                                loc=params[0],
                                scale=params[1],
                                lb=VaR)
        CVaR = (1 / (1 - confidence)) * tail_loss
        return losses, VaR, CVaR
    def mpc(self):
        n_interval = int(self.T / self.I)
        xc = 0
        cost_mpc = np.zeros(n_interval)
        clf = self.estimate_gmm(self.P[:self.N])
        ex = 0
        k, por, mean, std = len(
            clf.weights_), clf.weights_, clf.means_, clf.covariances_
        for i in range(k):
            ex = ex + por[i] * norm.expect(self.norm_pdfx,
                                           loc=mean[i],
                                           scale=np.sqrt(std[i]),
                                           lb=0,
                                           ub=np.inf)
        for n in range(1, n_interval + 1):
            r_pred = self.pred_step(0, (n - 1) * self.I, (n) * self.I, "Wind")
            r_pred = r_pred.astype(int)
            r_pred = r_pred.reshape(len(r_pred))

            a_real = self.D[self.N + self.V + (n - 1) * self.I:self.N +
                            self.V + n * self.I]
            r_real = self.R[self.N + self.V + (n - 1) * self.I:self.N +
                            self.V + n * self.I]
            p_real = self.P[self.N + self.V + (n - 1) * self.I:self.N +
                            self.V + n * self.I]

            d_real = (a_real - r_real)
            d_pred = (a_real - r_pred)

            for i in range(len(d_pred)):
                d_pred[i] = max(d_pred[i], 0)

            d_real = d_real.astype(int)
            d_real = np.r_[np.array(0), d_real]
            d_pred = d_pred.astype(int)
            d_pred = np.r_[np.array(0), d_pred]
            p_real = np.r_[np.array(self.P[self.N + self.V + (n - 1) * self.I -
                                           1]), p_real]

            x, d, va, vb, cost = self.Ampc_hat(d_pred, p_real,
                                               (n - 1) * self.I, n * self.I,
                                               xc)
            cost_mpc[n - 1], xc = self.Aour_demand(vb - d, d_real, p_real, xc)

        cost_mpc_copy = cost_mpc.copy()
        for i in range(len(cost_mpc_copy)):
            cost_mpc[i] = sum(cost_mpc_copy[:i + 1])
        return cost_mpc
Exemplo n.º 8
0
    def calc_risk_montecarlo(self,
                             confidence=0.95,
                             N=1000,
                             total_steps=1,
                             random_state=3567):
        e_returns = self.returns.mean().to_frame()  ## daily expected returns
        e_cov = self.returns.cov()
        # e_cov = self.covariance
        num_of_assets = self.num_of_assets

        # Initialize daily cumulative loss for the assets, across N runs
        daily_loss = np.zeros((num_of_assets, N))

        # Create the Monte Carlo simulated runs for each asset with correlated randomness
        # N: number of runs
        # total_steps: number of minutes per day
        for n in tqdm(range(N)):
            # Compute simulated path of length total_steps for correlated returns
            correlated_randomness = e_cov @ norm.rvs(size=(num_of_assets,
                                                           total_steps))
            # Adjust simulated path by total_steps and mean of portfolio losses
            steps = 1 / total_steps
            minute_losses = e_returns * steps + correlated_randomness * np.sqrt(
                steps)
            daily_loss[:, n] = list(minute_losses)

        # Calculate portfolio losses
        losses = pd.DataFrame(daily_loss).T
        losses.columns = self.assets
        losses = -losses.dot(self.allocation).iloc[:, 0]

        params = norm.fit(losses)
        VaR = norm.ppf(confidence, *params)

        tail_loss = norm.expect(lambda x: x,
                                loc=params[0],
                                scale=params[1],
                                lb=VaR)
        CVaR = (1 / (1 - confidence)) * tail_loss

        return losses, VaR, CVaR
Exemplo n.º 9
0
def prob_z_is_max(z, gps, minz, maxz, verbose=0, tfinp=lambda x:x):
    assert minz <= z <= maxz, '{} not in [{}, {}]'.format(z, minz, maxz)
    mu, var = gps.predict(tfinp(z))
    ess = gps.ess(tfinp(z))
    #print(z, ess)
    mu, var = array2scalar(mu), array2scalar(var)
    sigma = np.sqrt(var/ess)
    
    global nump
    nump = 0
    
    def myf(x):
        global nump 
        nump += 1
        return prod_int_div_cdf(x, mu, sigma, gps, minz, maxz, verbose=0, tfinp=tfinp)

    start = time()
    
    val = norm.expect(myf, loc=mu, scale=sigma, lb=mu-3.5*sigma, ub=mu+3.5*sigma,
                      epsabs=0.001, epsrel=0.001)
    if verbose > 0:
        print('t[expected]: {}, #p: {}'.format(time()-start, nump))
    return val
std_loss = losses.std()

# In[409]:

std_loss

# In[410]:

# Compute the mean and variance of the portfolio losses
pm = mean_loss
ps = std_loss

# Compute the 95% VaR using the .ppf()
VaR_95 = norm.ppf(0.95, loc=pm, scale=ps)
# Compute the expected tail loss and the CVaR in the worst 5% of cases
tail_loss = norm.expect(lambda x: x, loc=pm, scale=ps, lb=VaR_95)
CVaR_95 = (1 / (1 - 0.95)) * tail_loss

# Plot the normal distribution histogram and add lines for the VaR and CVaR
plt.hist(norm.rvs(size=100000, loc=pm, scale=ps), bins=100)
plt.axvline(x=VaR_95, c='r', label="VaR, 95% confidence level")
plt.axvline(x=CVaR_95, c='g', label="CVaR, worst 5% of outcomes")
plt.legend()
plt.show()

# ## VaR of Student's t-distribution

# In[411]:

from scipy.stats import t
Exemplo n.º 11
0
from scipy.stats import norm 
from scipy.stats import expon
from scipy import integrate
import numpy as np

f1 = lambda x: x**4
f2 = lambda x:x**2 - x + 2

rv = norm(loc = 1, scale=2);
print rv.mean();
print rv.var();
print rv.moment(1)
print rv.moment(2)

print norm.expect(f1, loc=1, scale=2)
print "============================"

E1 = lambda x: x*0.5*np.exp(-x/2)
E2 = lambda x: x**2*0.5*np.exp(-x/2)
print integrate.quad(E1,0,np.inf)
print integrate.quad(E2,0,np.inf)

print expon(scale=2).moment(1)
print expon(scale=2).moment(2)
Exemplo n.º 12
0
Arquivo: 26.py Projeto: XNYu/Statistic
def nc_of_norm():
    f1 = lambda x: x**4
    f2 = lambda x: x**2-x+2

    log(norm.expect(f1, loc=1, scale=2))
    log(norm.expect(f2, loc=2, scale=5))
def nc_of_norm():
    f1 = lambda x: x**4
    f2 = lambda x: x**2 - x + 2

    print(norm.expect(f1, loc=1, scale=2))
    print(norm.expect(f2, loc=2, scale=5))
Exemplo n.º 14
0
regret = np.zeros(N-2)
for T in range(2,N):
    theta = Atheta_gmm(clf,T+1)
    betas = 0; alphas = 0;
    
    for x in range(T-1):
        trunc = 0; pdf0 = 0; pdfx = 0;
        for i in range(k):
            trunc = trunc + por[i]*(1-norm.cdf(trunctry,loc = mean[i], scale = np.sqrt(std[i])))
            pdf0 = pdf0 + por[i]*norm.cdf(trunctry,loc = mean[i], scale = np.sqrt(std[i]))
            pdfx = pdfx + por[i]*norm.pdf(theta[-(i+1)],loc = mean[i], scale = np.sqrt(std[i]))
        betas = betas + min(pdfx/trunc,pdf0/trunc)
    
    for i in range(k):
        trunc = trunc + por[i]*(1-norm.cdf(trunctry,loc = mean[i], scale = np.sqrt(std[i])))
        alphas = alphas+por[i]*norm.expect(gnorm,loc=mean[i],scale=np.sqrt(std[i]),lb=trunctry,ub=10000000)
    alphas = alphas/trunc
    
    regret[T-2] = 2/(betas)-T*pow(alphas/(2*theta[T-2]),T-1)*theta[T-2]

regret_uniform = np.zeros((N,ITER))
for n in range(1,N+1):
    for iternum in range(ITER):
        p = sample(clf, n_samples=N, random_state=None)
        p = list(p)
        o = min(p)
        theta = Atheta_gmm(clf,n)
        for t in range(n):
            if p[t]<= theta[t]:
                re= (p[t]-o)/o
                break
from scipy.stats import norm

f1 = lambda x: x**4
f2 = lambda x: x**2 - x + 2

print(norm.expect(f1, loc=1, scale=2))
print(norm.expect(f2, loc=1, scale=5))
up = mean + 2 * std / np.sqrt(counter)

print("There is a 95.5% probability that daily returns will fall between " +
      str(low) + " and " + str(up))

#Calculating CVaR

df.loc[df['Daily Return'] < 0, 'Losses'] = df['Daily Return']

nLoss = df['Losses'].count()

sumLoss = df['Losses'].sum()

meanLoss = df['Losses'].mean()
stdLoss = df['Losses'].std()

# Compute the expected tail loss and the CVaR in the worst 5% of cases
tail_loss = norm.expect(lambda x: x, loc=meanLoss, scale=stdLoss, lb=Var_5)
CVaR_95 = (1 / (1 - 0.95)) * tail_loss

print()

print("The expected return on TSLA for the worst 5% of cases (CVAR) = " +
      str(CVaR_95))

# Plotting the normal distribution histogram and adding lines for the VaR
plt.hist(norm.rvs(size=100000, loc=meanLoss, scale=stdLoss), bins=100)
plt.axvline(x=Var_5, c='r', label="VaR, 95% confidence level")
plt.legend()
plt.show()