def generate_frame_time(self):
     is_nonzero_frame_time = False
     while not is_nonzero_frame_time:
         #planck gives us discrete exponential values
         R = planck.rvs(self.exponential_mean, size=1)
         if R[0] > 0:
             frame_time = R[0]
             is_nonzero_frame_time = True
     return frame_time
 def wait(self):
     mean = 0.0025
     R = planck.rvs(mean, size=1)
     retry_time = R[0]
     yield self.env.timeout(retry_time)
mean, var, skew, kurt = planck.stats(lambda_, moments='mvsk')

# Display the probability mass function (``pmf``):

x = np.arange(planck.ppf(0.01, lambda_),
              planck.ppf(0.99, lambda_))
ax.plot(x, planck.pmf(x, lambda_), 'bo', ms=8, label='planck pmf')
ax.vlines(x, 0, planck.pmf(x, lambda_), colors='b', lw=5, alpha=0.5)

# Alternatively, the distribution object can be called (as a function)
# to fix the shape and location. This returns a "frozen" RV object holding
# the given parameters fixed.

# Freeze the distribution and display the frozen ``pmf``:

rv = planck(lambda_)
ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
        label='frozen pmf')
ax.legend(loc='best', frameon=False)
plt.show()

# Check accuracy of ``cdf`` and ``ppf``:

prob = planck.cdf(x, lambda_)
np.allclose(x, planck.ppf(prob, lambda_))
# True

# Generate random numbers:

r = planck.rvs(lambda_, size=1000)