sample_time=0.1 * doubling_time, nameCRM="./data/dataCRMnoisy.csv") print('It took', np.int(time.time() - start), 'seconds.') data1 = pd.read_csv("./data/dataCRMnoisy.csv") timearray = data1.time.unique() mnszarray = [] cvszarray = [] errcv2sz = [] errmnsz = [] df = data1 del df['time'] for m in range(len(df)): szs = df.loc[m, :].values.tolist() mean_cntr, var_cntr, std_cntr = bayesest(szs, alpha=0.95) mnszarray.append(np.mean(szs)) errmnsz.append(mean_cntr[1][1] - mean_cntr[0]) cvszarray.append(np.var(szs) / np.mean(szs)**2) errv = (var_cntr[1][1] - var_cntr[0]) / mean_cntr[0]**2 + 2 * ( mean_cntr[1][1] - mean_cntr[0]) * var_cntr[0] / mean_cntr[0]**3 errcv2sz.append(errv) fig, ax = plt.subplots(1, 2, figsize=(12, 4)) ax[0].plot(np.array(timearray) / doubling_time, np.array(mnszarray)) ax[0].fill_between(np.array(timearray) / doubling_time, np.array(mnszarray) - np.array(errmnsz), np.array(mnszarray) + np.array(errmnsz), alpha=1, edgecolor='#4db8ff', facecolor='#4db8ff',
i) #Obtaining trends in sd vs Sb using master equation formulation cv2sz.append(cv2) deltsz.append(sd - i) data1 = pd.read_csv("./data/dataCRM.csv") timearray = data1.time.unique() mnszarray = [] cvszarray = [] errcv2sz = [] errmnsz = [] df = data1 del df['time'] for m in range(len(df)): szs = df.loc[m, :].values.tolist() mean_cntr, var_cntr, std_cntr = bayesest(szs, alpha=0.95) mnszarray.append(np.mean(szs)) errmnsz.append(mean_cntr[1][1] - mean_cntr[0]) cvszarray.append(np.var(szs) / np.mean(szs)**2) errv = (var_cntr[1][1] - var_cntr[0]) / mean_cntr[0]**2 + 2 * ( mean_cntr[1][1] - mean_cntr[0]) * var_cntr[0] / mean_cntr[0]**3 errcv2sz.append(errv) fig, ax = plt.subplots(1, 2, figsize=(12, 4)) ax[0].plot(np.array(timearray) / doubling_time, mnszarray) ax[0].fill_between(np.array(timearray) / doubling_time, np.array(mnszarray) - np.array(errmnsz), np.array(mnszarray) + np.array(errmnsz), alpha=1, edgecolor='#4db8ff', facecolor='#4db8ff',