Exemplo n.º 1
0
def vector_stats(data, group=False):
    stats = pd.DataFrame()
    stats['name'] = data.name
    stats['run'] = data.run
    stats['mean'] = data.value.apply(lambda x: x.mean())
    stats['max'] = data.value.apply(lambda x: x.max())
    stats['min'] = data.value.apply(lambda x: x.min())
    stats['std'] = data.value.apply(lambda x: x.std())
    stats['count'] = data.value.apply(lambda x: x.size)
    return stats.groupby(['name']).mean().drop('run',
                                               axis=1) if group else stats
Exemplo n.º 2
0
def merge_dates(stats):
    pat = '(^\d+\-\d+\-\d+)'
    extracted = stats.columns.str.extract(pat, expand=False)
    grouped = stats.groupby(extracted, axis=1).sum()
    return grouped
Exemplo n.º 3
0
def merge_excercises(stats):
    pat = '(^student$|\d+$)'
    extracted = stats.columns.str.extract(pat, expand=False)
    grouped = stats.groupby(extracted, axis=1).sum()
    grouped = grouped.groupby(['student'], axis=0).sum()
    return grouped
Exemplo n.º 4
0
def merge_excercises(stats):
    pat = '(\d+$)'
    extracted = stats.columns.str.extract(pat, expand=False)
    grouped = stats.groupby(extracted, axis=1).sum()
    return grouped