Exemplo n.º 1
0
def Ftest_pvalue(d1, d2):
    df1 = len(d1) - 1
    df2 = len(d2) - 1
    F = stats.variance(d1) / stats.variance(d2)
    single_tailed_pval = ss.f.cdf(F, df1, df2)
    double_tailed_pval = single_tailed_pval * 2
    return (single_tailed_pval, double_tailed_pval)
Exemplo n.º 2
0
def Ftest_pvalue(d1,d2):
    df1 = len(d1) - 1
    df2 = len(d2) - 1
    F = stats.variance(d1) /stats.variance(d2)
    single_tailed_pval = ss.f.cdf(F,df1,df2)
    double_tailed_pval = single_tailed_pval * 2
    return double_tailed_pval
    print("F-test value:",Ftest_pvalue( d1,d2))
Exemplo n.º 3
0
def krige_old(xpt, ypt, zpt, rg, x, y, vtype='spher'):
    """ krige function to interpolate over a vector of points of x,y coords
    using the base points xpt ypt and the vario distance rg (range)"""
    #print 'geom kr l 522',len(xpt),rg
    n = len(x)
    z0 = zeros(n)
    vari = 0.5 * variance(zpt)
    #print 'vari',vari

    def gamma(vtype, d, rg):  # OA 25/10/18
        if vtype in ['spher', None]:
            gam = 3 / 2. * d / rg - 1 / 2. * (d / rg)**3.
            gam[d > rg] = 1
        elif vtype == 'gauss':
            gam = exp(-(d / rg)**2)
        elif vtype == 'gauss3':
            gam = exp(-(d / rg)**3)
        return gam

    for i in range(n):
        x0 = x[i]
        y0 = y[i]
        d = sqrt((x0 - xpt)**2 + (y0 - ypt)**2)
        ind = argsort(d)
        x1, y1, z1 = xpt[ind[:16]], ypt[ind[:16]], zpt[ind[:16]]
        # select closest 16 points
        xm1, ym1 = meshgrid(x1, y1)
        d = sqrt((xm1 - transpose(xm1))**2. + (ym1 - transpose(ym1))**2.)
        gam = gamma(vtype, d, rg)  # OA 25/10/18
        l1 = len(x1) + 1
        A = ones((l1, l1))
        #starting the A matrix
        A[:-1, :-1] = gam * vari
        A[-1, -1] = 0.
        d = sqrt((x0 - x1)**2. + (y0 - y1)**2.)
        gam = gamma(vtype, d, rg)  # OA 25/10/18
        B = ones((l1, 1))
        B[:-1, 0] = gam * vari
        lb = solve(A, B)
        z0[i] = sum(z1 * transpose(lb[:-1]))
    #z0 = clip(z0,min(zpt)*0.9,max(zpt)*1.1)
    return z0
Exemplo n.º 4
0
import constante
from funciones import normal_por_aceptacion_rechazo

z = normal_por_aceptacion_rechazo(media=35, de=5)

hist_data = [z]

# ploteo data
fig = ff.create_distplot(hist_data, [""], bin_size=.01, curve_type='normal')
fig['layout'].update(title='Normal empirica vs Normal de python')
py.plot(fig, filename='normal empirica vs normal de python')

# Mostramos media, varianza y moda muestrales y teoricos
media = st.mean(z)
varianza = st.variance(z)
moda = max(set(z), key=z.count)

print("Media muestral: {0} Varianza muestral: {1} Moda muestral: {2}".format(media, varianza, moda))
print("Media teorica:  {0} Varianza teorica:  {1} Moda teorica:  {2}".format(35, 5*5, 35))
# RESPUESTA 5
from funciones import gcl_uniforme
import constante

# genero numero aleatorios uniformes
x_n = constante.SEMILLA
uniformes = []
empiricos = []

for _ in range(constante.CANT_EXPERIMENTOS):
    x_n = gcl_uniforme(x_n)
Exemplo n.º 5
0
def featurescalculator(sigbufs, n):

    Desface = 12000
    x = 0 + Desface  # desface en # de muestras donde inicia el examen
    aumento = 0

    segundos = int(
        (len(sigbufs[3, :]) - Desface) / 200)  # numero de segundos del examen
    Features = np.empty(((n - 5) * segundos, 32))  # matriz de caracteristicas

    for a in np.arange(segundos):
        for i in np.arange((n - 5)):  #n-2  numero de canales

            warnings.filterwarnings("ignore")
            #TIEMPO
            minimo = scipy.stats.tmin(sigbufs[i, x:x + 200])
            maximo = scipy.stats.tmax(sigbufs[i, x:x + 200])
            kurto = scipy.stats.kurtosis(sigbufs[i, x:x + 200])
            energ = energia(sigbufs[i, x:x + 200])
            sha = shannon(sigbufs[i, x:x + 200])
            #DWT
            cA5, cD4, cD3, cD2, cD1 = pywt.wavedec(sigbufs[i, x:x + 200],
                                                   'db4',
                                                   level=4)
            varianzaA5 = stats.variance(cA5)
            energA5 = energia(cA5)
            shaA5 = shannon(cA5)
            actiA5 = hjorth(cA5)
            varianzaD4 = stats.variance(cD4)
            energD4 = energia(cD4)
            rD4 = renyi(cD4)
            shaD4 = shannon(cD4)
            EHD4 = hurst(cD4)
            actiA4 = hjorth(cD4)
            varianzaD3 = stats.variance(cD3)
            desviacionD3 = stats.stdev(cD3)
            energD3 = energia(cD3)
            rD3 = renyi(cD3)
            apenD3 = ApEn(cD3, 2, 3)
            shaD3 = shannon(cD3)
            minimoD2 = scipy.stats.tmin(cD2)
            maximoD2 = scipy.stats.tmax(cD2)
            desviacionD2 = stats.stdev(cD2)
            kurtoD2 = scipy.stats.kurtosis(cD2)
            energD2 = energia(cD2)
            rD2 = renyi(cD2)
            shaD2 = shannon(cD2)
            minimoD1 = scipy.stats.tmin(cD1)
            maximoD1 = scipy.stats.tmax(cD1)
            rD1 = renyi(cD1)
            #FFT
            nee = len(sigbufs[i, x:x + 200])  # tamaño
            Y = fft(sigbufs[i, x:x + 200]) / nee
            Yn = abs(Y)
            mediaf = stats.mean(Yn)

            #print (signal_labels[i])

            Features[i + aumento] = [
                minimo, maximo, kurto, energ, sha, varianzaA5, energA5, shaA5,
                actiA5, varianzaD4, energD4, rD4, shaD4, EHD4, actiA4,
                varianzaD3, desviacionD3, energD3, rD3, apenD3, shaD3,
                minimoD2, maximoD2, desviacionD2, kurtoD2, energD2, rD2, shaD2,
                minimoD1, maximoD1, rD1, mediaf
            ]
            #Labels=signal_labels[i]
            #print (Labels)

        x = x + 200
        aumento = aumento + 18  ##16 -- n-2, 21 -- n-4, 15  -- n-3, 19  -- n-4,   43 ---- n-8

    return Features