def _tc(self, rho, T, fase): """Custom method for critical enhancement""" Tr = T / 304.1282 rhor = rho / 467.6 nc = 0.775547504 # Table 4 a = [ 0, 3, 6.70697, 0.94604, 0.3, 0.3, 0.39751, 0.33791, 0.77963, 0.79857, 0.9, 0.02, 0.2 ] # Eq 6 alfa = 1 - a[10] * arccosh(1 + a[11] * ((1 - Tr)**2)**a[12]) # Eq 5 num = rhor * exp(-rhor**a[1] / a[1] - (a[2] * (Tr - 1))**2 - (a[3] * (rhor - 1))**2) den1 = pow( pow(1 - 1 / Tr + a[4] * pow(pow(rhor - 1, 2), 0.5 / a[5]), 2), a[6]) den2 = pow(pow(a[7] * (rhor - alfa), 2), a[8]) lc = num / (den1 + den2)**a[9] return lc * nc * 4.81384e-3
def Rz_to_uv(R,z,delta=1.): """ NAME: Rz_to_uv PURPOSE: calculate prolate confocal u and v coordinates from R,z, and delta INPUT: R - radius z - height delta= focus OUTPUT: (u,v) HISTORY: 2012-11-27 - Written - Bovy (IAS) """ coshu, cosv= Rz_to_coshucosv(R,z,delta) u= sc.arccosh(coshu) v= sc.arccos(cosv) return (u,v)
def get_bulk_Delta(omega_D, Delta_0, T0, initial_guess=None): oomega_D = omega_D Delta_0 *= 1000/omega_D T0 *= 1000/omega_D omega_D = 1000 T0 += 1e-15 if not initial_guess: initial_guess = Delta_0 c = 1/S.arccosh(omega_D / Delta_0) def func(z): Delta = z[0] def integrand(E): return Delta*S.tanh(.5*E/T0) / S.sqrt(E**2 - Delta**2 + 1e-9) r = S.integrate.quad(integrand, Delta, omega_D, epsrel=1e-5, epsabs=1e-5*Delta/c + 1e-8) x = r[0] - Delta/c if abs(x) < 1e-40: return 0 return x z = S.optimize.fsolve(func, initial_guess, xtol=1e-4) * oomega_D/1000 return abs(z)
def _tc(self, rho, T, fase): """Custom method for critical enhancement""" Tr = T/304.1282 rhor = rho/467.6 nc = 0.775547504 # Table 4 a = [0, 3, 6.70697, 0.94604, 0.3, 0.3, 0.39751, 0.33791, 0.77963, 0.79857, 0.9, 0.02, 0.2] # Eq 6 alfa = 1-a[10]*arccosh(1+a[11]*((1-Tr)**2)**a[12]) # Eq 5 num = rhor*exp(-rhor**a[1]/a[1]-(a[2]*(Tr-1))**2-(a[3]*(rhor-1))**2) den1 = pow(pow(1-1/Tr+a[4]*pow(pow(rhor-1, 2), 0.5/a[5]), 2), a[6]) den2 = pow(pow(a[7]*(rhor-alfa), 2), a[8]) lc = num / (den1+den2)**a[9] return lc*nc*4.81384e-3
""" import os from pyclaw import data import numpy as np from numpy import pi, tan, sin from scipy import sinh, cosh, tanh, arccosh # Set initial depth: #d = 0.061 ## now in setrun # These don't change: theta = 15. * pi / 180. epsilon = 0.717 C = arccosh(1. / epsilon) b = 0.395 w = 0.680 Tprime = 0.082 + 0.004 kb = 2 * C / b kw = 2 * C / w x0 = d / tan(theta) + Tprime / sin(theta) #------------------------------ def setrun(claw_pkg='geoclaw', d_param=None): #------------------------------ """ Define the parameters used for running Clawpack. INPUT:
# Thermal properties of soil k = 1.1 #W/mK rho = 1750 # kg/m3 cp = 1380 # J/kgK # Boundary conditions h_air = 10 # Average convective heat transfer coefficient W/m2K h_rad_sky = 4 * 5.67e-8 * 40**3 # Average radiation heat transfer coefficient # U-value of energy pile r1 = 0.028 r2 = r0 l = 0.3 k_conc = 1 # W/mK S = 2 * sp.pi * H / sp.arccosh((r1**2 + r2**2 - l**2) / (2 * r1 * r2)) #U_ep = k_conc*S/(2*sp.pi*r0*H) # U-value of energy pile U_ep = 3 print("Shape factor:", S, "U_ep:", U_ep) # Temperatures T_ep = -6 + 4 / 3 # Fluid temperature C T0 = 5 # Initial temperature of soil # Heating days per one year (days 0-364) heating_starts = 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 # September 1st heating_ends = 31 + 28 + 31 + 29 # 30th April # Printing of iteration rounds # 0 for no printing/plotting print_gap = 10 # You can variate this
def H(L, D): return abs((1/15.0)*sc.arccosh(-sc.tan(sc.radians(L)) * sc.tan(sc.radians(23.44)*sc.sin(sc.radians(((D+284)*360)/365.0)))))
#-*- coding: utf-8 -*- import scipy as sc #enthält bereits math und numpy from matplotlib import pyplot as plt def H(L, D): return abs((1/15.0)*sc.arccosh(-sc.tan(sc.radians(L)) * sc.tan(sc.radians(23.44)*sc.sin(sc.radians(((D+284)*360)/365.0))))) D = 105 L = -40 #print "Sunrise: " + str(H(L, D)) print str(-sc.arccosh(L*(sc.pi/180)) * sc.tan(23.44*(sc.pi/180)*sc.sin((((D+284)*360)/365.0)*(sc.pi/180)))) """ x2 = sc.linspace(-2., 12., 1000) plt.plot(x2, (sc.log((x2**2)+5)*sc.cos(0.8*x2)+(3.5*x2))/(sc.e**(x2/10)), 'r') plt.ylabel('f($x$)') plt.xlabel('$x$') plt.grid() plt.text(5, -5, r'$f(x) = \frac{\ln(x^2+5) \cos(0.8x)+3.5x}{e^{\frac{x}{10}}}$', fontsize=20) plt.fill_between(x2,(sc.log((x2**2)+5)*sc.cos(0.8*x2)+(3.5*x2))/(sc.e**(x2/10)), 0, color='blue', alpha = 0.2) plt.show() """
""" import os from pyclaw import data import numpy as np from numpy import pi,tan,sin from scipy import sinh,cosh,tanh,arccosh # Set initial depth: #d = 0.061 ## now in setrun # These don't change: theta = 15. * pi / 180. epsilon = 0.717 C = arccosh(1. / epsilon) b = 0.395 w = 0.680 Tprime = 0.082 + 0.004 kb = 2*C / b kw = 2*C / w x0 = d/tan(theta) + Tprime/sin(theta) #------------------------------ def setrun(claw_pkg='geoclaw', d_param = None): #------------------------------ """ Define the parameters used for running Clawpack.