Exemplo n.º 1
0
def read_hdf5_arc(file_name):
    """reads a .hdf file and returns data contents mapped in a dict

    :type file_name: str
    :param file_name: path to the file to read

    :returns: ndarray: raw data [f32], float: sampling rate in Hz,
    or None, None on read error
    """

    data, srate = None, None
    with openFile(file_name, 'r') as arc:
        for node in arc:
            # XXX: any more identifiers we used or the data in an archive?!
            if node._v_name.lower() in ['data', 'x']:
                data = sp.asanyarray(node.read())
                try:
                    data = data.astype(sp.float32)
                    if data.shape[0] <= data.shape[1]:
                        data = data.T.copy()
                except:
                    data = None
            if node._v_name.lower() == 'srate':
                try:
                    srate = float(node.read())
                except:
                    srate = None
    return data, srate
Exemplo n.º 2
0
def create_hdf5_arc(file_name, rdata, srate=1000.0, **kwargs):
    """creates a valid hdf5 archive for :rdata:

    :type file_name: str
    :param file_name: path to the file to write
    :type rdata: ndarray
    :param rdata: raw data array [samples, channels] castable to f32
    :type srate: float
    :param srate: sampling rate of rdata in Hz
        Default=1000.0

    :returns: True on success, False else
    """

    with openFile(file_name, 'w') as arc:
        # XXX: we go with 'data' here
        try:
            data = sp.asanyarray(rdata, dtype=sp.float32)
            if data.shape[0] <= rdata.shape[1]:
                data = data.T
            arc.createArray(arc.root, 'data', data)
            arc.createArray(arc.root, 'srate', srate)
            for k, v in kwargs.iteritems():
                arc.createArray(arc.root, str(k), v)
            return True
        except:
            return False
Exemplo n.º 3
0
def read_hdf5_arc(file_name):
    """reads a .hdf file and returns data contents mapped in a dict

    :type file_name: str
    :param file_name: path to the file to read

    :returns: ndarray: raw data [f32], float: sampling rate in Hz,
    or None, None on read error
    """

    data, srate = None, None
    with openFile(file_name, 'r') as arc:
        for node in arc:
            # XXX: any more identifiers we used or the data in an archive?!
            if node._v_name.lower() in ['data', 'x']:
                data = sp.asanyarray(node.read())
                try:
                    data = data.astype(sp.float32)
                    if data.shape[0] <= data.shape[1]:
                        data = data.T.copy()
                except:
                    data = None
            if node._v_name.lower() == 'srate':
                try:
                    srate = float(node.read())
                except:
                    srate = None
    return data, srate
Exemplo n.º 4
0
def create_hdf5_arc(file_name, rdata, srate=1000.0, **kwargs):
    """creates a valid hdf5 archive for :rdata:

    :type file_name: str
    :param file_name: path to the file to write
    :type rdata: ndarray
    :param rdata: raw data array [samples, channels] castable to f32
    :type srate: float
    :param srate: sampling rate of rdata in Hz
        Default=1000.0

    :returns: True on success, False else
    """

    with openFile(file_name, 'w') as arc:
        # XXX: we go with 'data' here
        try:
            data = sp.asanyarray(rdata, dtype=sp.float32)
            if data.shape[0] <= rdata.shape[1]:
                data = data.T
            arc.createArray(arc.root, 'data', data)
            arc.createArray(arc.root, 'srate', srate)
            for k, v in kwargs.iteritems():
                arc.createArray(arc.root, str(k), v)
            return True
        except:
            return False
Exemplo n.º 5
0
 def __coerce__(self, other):
     try:
         other = sp.asanyarray(other)
         if other.shape == self.shape:
             return (self.toarray(), other)
         else:
             return None
     except:
         return None
Exemplo n.º 6
0
 def __coerce__(self, other):
     try:
         other = sp.asanyarray(other)
         if other.shape == self.shape or sp.isscalar(other):
             return (self.toarray(), other)
         else:
             return NotImplemented
     except:
         return NotImplemented
Exemplo n.º 7
0
 def __coerce__(self, other):
     try:
         other = sp.asanyarray(other)
         if other.shape == self.shape:
             return (self.toarray(), other)
         else:
             return None
     except:
         return None
Exemplo n.º 8
0
 def __coerce__(self, other):
     try:
         other = sp.asanyarray(other)
         if other.shape == self.shape or sp.isscalar(other):
             return (self.toarray(), other)
         else:
             return NotImplemented
     except:
         return NotImplemented
Exemplo n.º 9
0
 def __mul__(self, other):
     if sp.isscalar(other):
         return simple_diag_matrix(self.diag * other)
     
     try:
         other = sp.asanyarray(other)
 
         if other.shape == self.shape:
             return simple_diag_matrix(self.diag * other.diagonal())
         
         return self.toarray() * other
     except:
         return NotImplemented
Exemplo n.º 10
0
    def __mul__(self, other):
        if sp.isscalar(other):
            return simple_diag_matrix(self.diag * other)

        try:
            other = sp.asanyarray(other)

            if other.shape == self.shape:
                return simple_diag_matrix(self.diag * other.diagonal())

            return self.toarray() * other
        except:
            return NotImplemented
Exemplo n.º 11
0
    def __init__(self, value):
        """
        :type value: scalar dtype
        :param value: single digit value
        """

        super(MRScalar, self).__init__()

        value_ = value
        if sp.isscalar(value_):
            value_ = sp.asanyarray(value_)
        try:
            assert value_.ndim == 0
        except:
            raise ValueError('%s is not a scalar!' % value)
        self._value = value_
Exemplo n.º 12
0
    def __init__(self, value):
        """
        :type value: scalar dtype
        :param value: single digit value
        """

        super(MRScalar, self).__init__()

        value_ = value
        if sp.isscalar(value_):
            value_ = sp.asanyarray(value_)
        try:
            assert value_.ndim == 0
        except:
            raise ValueError('%s is not a scalar!' % value)
        self._value = value_
Exemplo n.º 13
0
    def append_data_peaks(self, data, force=False):
        """append bin(s) calculated from a strip of data

        with this method the data is first queried for peaks. this should
        reduce the noise/smoothness of the histogram as observed from the
        amplitude distribution of the pure signal.

        :type data: ndarray
        :param data: the data to generate the bin(s) to append from
        :type force: bool
        :param force: if True, immediately start a new bin before calculation
        """

        # check data
        data_ = sp.asanyarray(data)
        if data.ndim < 2:
            data_ = sp.atleast_2d(data_)
            if data_.shape[0] < data_.shape[1]:
                data_ = data_.T
        nsmpl, nchan = data_.shape
        if nchan != self._nchan:
            raise ValueError('data has channel count %s, expected %s' %
                             (nchan, self._nchan))

        # generate bin set
        bin_set = [0]
        if self._cur_bin_smpl != 0:
            bin_set.append(self._bin_size - self._cur_bin_smpl)
        while bin_set[-1] < nsmpl:
            bin_set.append(bin_set[-1] + self._bin_size)
        if bin_set[-1] > nsmpl:
            bin_set[-1] = nsmpl

        # process bins
        idx = 1
        while idx < len(bin_set):
            data_bin = data_[bin_set[idx - 1]:bin_set[idx], :]
            for c in xrange(self._nchan):
                self._cur_bin[c] += sp.histogram(data_bin[:, c],
                                                 bins=self._ampl_range)[0]
            self._cur_bin_smpl += data_bin.shape[0]
            if self._cur_bin_smpl == self._bin_size:
                self.append_bin(self._cur_bin)
                self._cur_bin[:] = 0
                self._cur_bin_smpl = 0
            idx += 1
Exemplo n.º 14
0
    def append_bin(self, bin):
        """append an AmplHistBin instance

        :type bin: ndarray like
        :param bin: the amplHistBin to append
        """

        # checks
        bin_ = sp.asanyarray(bin)
        if bin_.shape != self._cur_bin.shape:
            raise ValueError('shape does not match! expected %s, got %s' %
                             (self._cur_bin.shape, bin_.shape))
        if bin_.sum() == 0:
            print '!!appending zero bin!!'

        # append bin
        self._hist_data.append(bin_)
Exemplo n.º 15
0
    def append_data_peaks(self, data, force=False):
        """append bin(s) calculated from a strip of data

        with this method the data is first queried for peaks. this should
        reduce the noise/smoothness of the histogram as observed from the
        amplitude distribution of the pure signal.

        :type data: ndarray
        :param data: the data to generate the bin(s) to append from
        :type force: bool
        :param force: if True, immediately start a new bin before calculation
        """

        # check data
        data_ = sp.asanyarray(data)
        if data.ndim < 2:
            data_ = sp.atleast_2d(data_)
            if data_.shape[0] < data_.shape[1]:
                data_ = data_.T
        nsmpl, nchan = data_.shape
        if nchan != self._nchan:
            raise ValueError('data has channel count %s, expected %s' %
                             (nchan, self._nchan))

        # generate bin set
        bin_set = [0]
        if self._cur_bin_smpl != 0:
            bin_set.append(self._bin_size - self._cur_bin_smpl)
        while bin_set[-1] < nsmpl:
            bin_set.append(bin_set[-1] + self._bin_size)
        if bin_set[-1] > nsmpl:
            bin_set[-1] = nsmpl

        # process bins
        idx = 1
        while idx < len(bin_set):
            data_bin = data_[bin_set[idx - 1]:bin_set[idx], :]
            for c in xrange(self._nchan):
                self._cur_bin[c] += sp.histogram(data_bin[:, c],
                    bins=self._ampl_range)[0]
            self._cur_bin_smpl += data_bin.shape[0]
            if self._cur_bin_smpl == self._bin_size:
                self.append_bin(self._cur_bin)
                self._cur_bin[:] = 0
                self._cur_bin_smpl = 0
            idx += 1
Exemplo n.º 16
0
    def append_bin(self, bin):
        """append an AmplHistBin instance

        :type bin: ndarray like
        :param bin: the amplHistBin to append
        """

        # checks
        bin_ = sp.asanyarray(bin)
        if bin_.shape != self._cur_bin.shape:
            raise ValueError('shape does not match! expected %s, got %s' %
                             (self._cur_bin.shape, bin_.shape))
        if bin_.sum() == 0:
            print '!!appending zero bin!!'

        # append bin
        self._hist_data.append(bin_)
Exemplo n.º 17
0
def dict_list2arr(in_dict):
    """converts all lists in a dictionary to `ndarray`. [in place!]

    If there are instances of dict found as values, this function will be
    applied recursively.

    :Parameters:
        in_dict : dict
    """

    try:
        for k in in_dict:
            if isinstance(in_dict[k], list):
                in_dict[k] = sp.asanyarray(in_dict[k])
            elif isinstance(in_dict[k], dict):
                dict_list2arr(in_dict[k])
            else:
                pass
    finally:
        return in_dict
Exemplo n.º 18
0
def dict_list2arr(in_dict):
    """converts all lists in a dictionary to `ndarray`. [in place!]

    If there are instances of dict found as values, this function will be
    applied recursively.

    :Parameters:
        in_dict : dict
    """

    try:
        for k in in_dict:
            if isinstance(in_dict[k], list):
                in_dict[k] = sp.asanyarray(in_dict[k])
            elif isinstance(in_dict[k], dict):
                dict_list2arr(in_dict[k])
            else:
                pass
    finally:
        return in_dict
Exemplo n.º 19
0
    def __init__(self, value, header=None):
        """
        :type value: ndarray
        :param value: single digit _value
        :type header: list
        :param header: list of str with as many entries as columns in _value
        """

        super(MRTable, self).__init__()

        val = sp.asanyarray(value)
        if val.dtype == object:
            raise ValueError('%s is not a compatible type: %s' %
                             (value, value.__class__.__name__))
        if val.ndim != 2:
            raise ValueError('%s is not ndim==2: _value.ndim==%s' % val.ndim)
        self._value = val
        self.header = None
        if header is not None:
            if len(header) == self._value.shape[1]:
                self.header = map(str, header)
Exemplo n.º 20
0
    def __init__(self, value, header=None):
        """
        :type value: ndarray
        :param value: single digit _value
        :type header: list
        :param header: list of str with as many entries as columns in _value
        """

        super(MRTable, self).__init__()

        val = sp.asanyarray(value)
        if val.dtype == object:
            raise ValueError('%s is not a compatible type: %s' %
                             (value, value.__class__.__name__))
        if val.ndim != 2:
            raise ValueError('%s is not ndim==2: _value.ndim==%s' % val.ndim)
        self._value = val
        self.header = None
        if header is not None:
            if len(header) == self._value.shape[1]:
                self.header = map(str, header)
Exemplo n.º 21
0
 def __init__(self, diag, dtype=None):
     diag = sp.asanyarray(diag, dtype=dtype)
     self.dtype = diag.dtype
     assert diag.ndim == 1
     self.diag = diag
     self.shape = (diag.shape[0], diag.shape[0])
Exemplo n.º 22
0
 def __init__(self, diag, dtype=None):
     diag = sp.asanyarray(diag, dtype=dtype)
     self.dtype = diag.dtype
     assert diag.ndim == 1
     self.diag = diag
     self.shape = (diag.shape[0], diag.shape[0])