Exemplo n.º 1
0
    def Sy(self, meas, geom):
        """Calculate measurement error covariance.

        Input: meas, the instrument measurement
        Returns: Sy, the measurement error covariance due to instrument noise
        """

        if self.model_type == 'SNR':
            bad = meas < 1e-5
            meas[bad] = 1e-5
            nedl = (1.0 / self.snr) * meas
            return pow(s.diagflat(nedl), 2)

        elif self.model_type == 'parametric':
            nedl = abs(self.noise[:, 0] * s.sqrt(self.noise[:, 1] + meas) +
                       self.noise[:, 2])
            nedl = nedl / s.sqrt(self.integrations)
            return pow(s.diagflat(nedl), 2)

        elif self.model_type == 'pushbroom':
            if geom.pushbroom_column is None:
                C = s.squeeze(self.covs.mean(axis=0))
            else:
                C = self.covs[geom.pushbroom_column, :, :]
            return C / s.sqrt(self.integrations)
Exemplo n.º 2
0
    def dmeas_dinstrumentb(self, x_instrument, wl_hi, rdn_hi):
        """Jacobian of radiance with respect to the instrument parameters
        that are unknown and not retrieved, i.e., the inevitable persisting
        uncertainties in instrument spectral and radiometric calibration.

        Input: meas, a vector of size n_chan
        Returns: Kb_instrument, a matrix of size [n_measurements x nb_instrument]
        """

        # Uncertainty due to radiometric calibration
        meas = self.sample(x_instrument, wl_hi, rdn_hi)
        dmeas_dinstrument = s.hstack(
            (s.diagflat(meas), s.zeros((self.n_chan, 2))))

        # Uncertainty due to spectral calibration
        if self.bval[-2] > 1e-6:
            dmeas_dinstrument[:, -2] = self.sample(
                x_instrument, wl_hi, s.hstack((s.diff(rdn_hi), s.array([0]))))

        # Uncertainty due to spectral stray light
        if self.bval[-1] > 1e-6:
            ssrf = srf(s.arange(-10, 11), 0, 4)
            blur = convolve(meas, ssrf, mode='same')
            dmeas_dinstrument[:, -1] = blur - meas

        return dmeas_dinstrument
Exemplo n.º 3
0
    def data_dump(self, x, rdn_meas, geom, fname):
        """Dump diagnostic data to a file."""

        Seps_inv, Seps_inv_sqrt = self.iv.calc_Seps(rdn_meas, geom)
        rdn_est = self.iv.fm.calc_rdn(x, geom)
        rdn_est_window = rdn_est[self.winidx]
        meas_window = rdn_meas[self.winidx]
        meas_resid = (rdn_est_window-meas_window).dot(Seps_inv_sqrt)
        xa, Sa, Sa_inv, Sa_inv_sqrt = self.iv.calc_prior(x, geom)
        prior_resid = (x - xa).dot(Sa_inv_sqrt)
        xopt, coeffs = self.iv.fm.invert_algebraic(x, rdn_meas, geom)
        rhoatm, sphalb, transm, solar_irr, coszen = coeffs
        Ls = self.iv.fm.surface.calc_Ls(x[self.iv.fm.surface_inds], geom)

        # jacobian of cost
        Kb = self.iv.fm.Kb(rdn_meas, geom)
        K = self.iv.fm.K(x, geom)
        xinit = self.iv.fm.init(rdn_meas, geom)
        Sy = self.iv.fm.instrument.Sy(rdn_meas, geom)
        S_hat, K, G = self.iv.calc_posterior(x, geom, rdn_meas)
        lrfl_est = self.iv.fm.calc_lrfl(x, geom)
        cost_jac_prior = s.diagflat(x - xa).dot(Sa_inv_sqrt)
        cost_jac_meas = Seps_inv_sqrt.dot(K[self.winidx, :])
        meas_Cov = self.iv.fm.Seps(rdn_meas, geom)
        mdict = {'K': K, 'G': G, 'S_hat': S_hat, 'prior_mu': xa, 'Ls': Ls,
                 'prior_Cov': Sa, 'rdn_meas': rdn_meas, 'rdn_est': rdn_est,
                 'x': x, 'meas_Cov': meas_Cov, 'wl': self.iv.fm.wl,
                 'lrfl_est': lrfl_est, 'cost_jac_prior': cost_jac_prior,
                 'Kb': Kb, 'cost_jac_meas': cost_jac_meas, 'winidx': self.winidx,
                 'meas_resid': meas_resid, 'prior_resid': prior_resid,
                 'noise_Cov': Sy, 'xinit': xinit, 'rhoatm': rhoatm,
                 'sphalb': sphalb, 'transm': transm, 'solar_irr': solar_irr,
                 'coszen': coszen}
        savemat(fname, mdict)
Exemplo n.º 4
0
def Diagonal(diag):
    """
    DiagonalMatrix makes a diagonal matrix (clearly) with elements equal to the
    elements of diag.

    diag: array of elements for diagonal
    """
    return scipy.diagflat(diag)
Exemplo n.º 5
0
def Diagonal(diag):
    """
    DiagonalMatrix makes a diagonal matrix (clearly) with elements equal to the
    elements of diag.

    diag: array of elements for diagonal
    """
    return scipy.diagflat(diag)
Exemplo n.º 6
0
def diag(ma):
    """Diagonal matrix with ma on the diagonal.

    ma needs to be (1, k) or (k, 1).
    """
    EXC._assertVectorOrScalar(asmatrix(ma))
    ma = N.mat(ma)
    return S.diagflat(ma)
Exemplo n.º 7
0
 def Kb_instrument(self, meas):
     """Jacobian of radiance with respect to NOT RETRIEVED instrument 
        variables (relative miscalibration error).
        Input: meas, a vector of size nchans
        Returns: Kb_instrument, a matrix of size 
         [n_measurements x nb_instrument]"""
     Kb_instrument = s.diagflat(meas)
     return Kb_instrument
Exemplo n.º 8
0
    def __init__(self, config):

        # Build the instrument model
        self.instrument = Instrument(config['instrument'])
        self.n_meas = self.instrument.n_chan

        # Build the radiative transfer model
        self.RT = RadiativeTransfer(config['radiative_transfer'])

        # Build the surface model
        self.surface = None
        for key, module, cname in surface_models:
            module = "isofit." + module
            if key in config:
                self.surface = getattr(import_module(module),
                                       cname)(config[key])
        if self.surface is None:
            raise ValueError('Must specify a valid surface model')

        # Set up passthrough option
        bounds, scale, init, statevec = [], [], [], []

        # Build state vector for each part of our forward model
        for name in ['surface', 'RT', 'instrument']:
            obj = getattr(self, name)
            inds = len(statevec) + s.arange(len(obj.statevec), dtype=int)
            setattr(self, 'idx_%s' % name, inds)
            for b in obj.bounds:
                bounds.append(deepcopy(b))
            for c in obj.scale:
                scale.append(deepcopy(c))
            for v in obj.init:
                init.append(deepcopy(v))
            for v in obj.statevec:
                statevec.append(deepcopy(v))

        self.bounds = tuple(s.array(bounds).T)
        self.scale = s.array(scale)
        self.init = s.array(init)
        self.statevec = statevec
        self.nstate = len(self.statevec)

        # Capture unmodeled variables.
        bvec, bval = [], []
        for name in ['RT', 'instrument', 'surface']:
            obj = getattr(self, name)
            inds = len(bvec) + s.arange(len(obj.bvec), dtype=int)
            setattr(self, '%s_b_inds' % name, inds)
            for b in obj.bval:
                bval.append(deepcopy(b))
            for v in obj.bvec:
                bvec.append(deepcopy(v))

        self.bvec = s.array(bvec)
        self.nbvec = len(self.bvec)
        self.bval = s.array(bval)
        self.Sb = s.diagflat(pow(self.bval, 2))
Exemplo n.º 9
0
def derritz(n,r):
    global T, phi

    phi=mat(sp.zeros((n,n)))
    
    y=F*r
    b=sqrt((y.T*y)[0,0])
    y=y/b
    phi[:,0]=y[:,0]

    for i in range(1,n):
        j=i-1
        y=F*phi[:,j]
        alpha=y.T*phi
        for k in range(i):
            y=y-alpha[0,k]*phi[:,k]
        b=sqrt((y.T*y)[0,0])
        phi[:,i]=y[:,0]/b
    T=phi.T*F*phi
    T=sp.diagflat(sp.diag(T))+sp.diagflat(sp.diag(T,1),1)+sp.diagflat(sp.diag(T,-1),-1)
Exemplo n.º 10
0
def adj_loglikelihood(xVec, lenSampleRibo, lenSampleRna, X, y, mu, sign):

    disp = sp.hstack([sp.repeat(xVec[0], lenSampleRibo), sp.repeat(xVec[1], lenSampleRna)])
    n = 1 / disp
    p = n / (n + mu)
    loglik = sum(nbinom.logpmf(y, n, p))

    diagVec = mu / (1 + sp.dot(mu.transpose(), disp))
    diagWM = sp.diagflat(diagVec)
    xtwx = sp.dot(sp.dot(sp.transpose(X), diagWM), X)

    coxreid = 0.5 * sp.log(sp.linalg.det(xtwx))
    ret = (loglik - coxreid) * sign
    #print "return value is " + str(ret)
    if isinstance(ret, complex):
        raise complexException()
    return ret
Exemplo n.º 11
0
def adj_loglikelihood(xVec, lenSampleRibo, lenSampleRna, X, y, mu, sign):

    disp = sp.hstack(
        [sp.repeat(xVec[0], lenSampleRibo),
         sp.repeat(xVec[1], lenSampleRna)])
    n = 1 / disp
    p = n / (n + mu)
    loglik = sum(nbinom.logpmf(y, n, p))

    diagVec = mu / (1 + sp.dot(mu.transpose(), disp))
    diagWM = sp.diagflat(diagVec)
    xtwx = sp.dot(sp.dot(sp.transpose(X), diagWM), X)

    coxreid = 0.5 * sp.log(sp.linalg.det(xtwx))
    ret = (loglik - coxreid) * sign
    #print "return value is " + str(ret)
    if isinstance(ret, complex):
        raise complexException()
    return ret
Exemplo n.º 12
0
def column_covariances(X, uniformity_thresh):
    Xvert = high_frequency_vert(X, sigma=4.0)
    Xvertp = high_frequency_vert(X, sigma=3.0)
    models = []
    use_C = []
    for i in range(X.shape[2]):
        xsub = Xvert[:, :, i]
        xsubp = Xvertp[:, :, i]
        mu = xsub.mean(axis=0)
        dists = s.sqrt(pow((xsub - mu), 2).sum(axis=1))
        distsp = s.sqrt(pow((xsubp - mu), 2).sum(axis=1))
        thresh = percentile(dists, 95.0)
        uthresh = dists * uniformity_thresh
        #use       = s.logical_and(dists<thresh, abs(dists-distsp) < uthresh)
        use = dists < thresh
        C = s.cov(xsub[use, :], rowvar=False)
        [U, V, D] = svd(C)
        V[V < 1e-8] = 1e-8
        C = U.dot(s.diagflat(V)).dot(D)
        models.append(C)
        use_C.append(use)
    return s.array(models), Xvert, Xvertp, s.array(use_C).T
Exemplo n.º 13
0
    def __init__(self, config):
        '''ForwardModel contains all the information about how to calculate
         radiance measurements at a specific spectral calibration, given a 
         state vector.  It also manages the distributions of unretrieved, 
         unknown parameters of the state vector (i.e. the S_b and K_b 
         matrices of Rodgers et al.'''

        self.instrument = Instrument(config['instrument'])
        self.n_meas = self.instrument.n_chan

        # Build the radiative transfer model
        self.RT = None
        for key, module, cname in RT_models:
            if key in config:
                self.RT = getattr(import_module(module), cname)(config[key])
        if self.RT is None:
            raise ValueError('Must specify a valid radiative transfer model')

        # Build the surface model
        self.surface = None
        for key, module, cname in surface_models:
            if key in config:
                self.surface = getattr(import_module(module),
                                       cname)(config[key])
        if self.surface is None:
            raise ValueError('Must specify a valid surface model')

        # Set up passthrough option
        bounds, scale, init, statevec = [], [], [], []

        # Build state vector for each part of our forward model
        for name in ['surface', 'RT', 'instrument']:
            obj = getattr(self, name)
            inds = len(statevec) + s.arange(len(obj.statevec), dtype=int)
            setattr(self, 'idx_%s' % name, inds)
            for b in obj.bounds:
                bounds.append(deepcopy(b))
            for c in obj.scale:
                scale.append(deepcopy(c))
            for v in obj.init:
                init.append(deepcopy(v))
            for v in obj.statevec:
                statevec.append(deepcopy(v))
        self.bounds = tuple(s.array(bounds).T)
        self.scale = s.array(scale)
        self.init = s.array(init)
        self.statevec = statevec
        self.nstate = len(self.statevec)

        # Capture unmodeled variables
        bvec, bval = [], []
        for name in ['RT', 'instrument', 'surface']:
            obj = getattr(self, name)
            inds = len(bvec) + s.arange(len(obj.bvec), dtype=int)
            setattr(self, '%s_b_inds' % name, inds)
            for b in obj.bval:
                bval.append(deepcopy(b))
            for v in obj.bvec:
                bvec.append(deepcopy(v))
        self.bvec = s.array(bvec)
        self.nbvec = len(self.bvec)
        self.bval = s.array(bval)
        self.Sb = s.diagflat(pow(self.bval, 2))
        return
Exemplo n.º 14
0
    def Sa(self):
        """Covariance of prior distribution (diagonal)."""

        if self.n_state == 0:
            return s.zeros((0, 0), dtype=float)
        return s.diagflat(pow(self.prior_sigma, 2))
Exemplo n.º 15
0
    def __init__(self, config):
        '''ForwardModel contains all the information about how to calculate
         radiance measurements at a specific spectral calibration, given a 
         state vector.  It also manages the distributions of unretrieved, 
         unknown parameters of the state vector (i.e. the S_b and K_b 
         matrices of Rodgers et al.'''

        self.instrument = Instrument(config['instrument'])

        # Build the radiative transfer model
        if 'modtran_radiative_transfer' in config:
            self.RT = ModtranRT(config['modtran_radiative_transfer'],
                                self.instrument)
        elif 'libradtran_radiative_transfer' in config:
            self.RT = LibRadTranRT(config['libradtran_radiative_transfer'],
                                   self.instrument)
        else:
            raise ValueError('Must specify a valid radiative transfer model')

        # Build the surface model
        if 'surface' in config:
            self.surface = Surface(config['surface'], self.RT)
        elif 'multicomponent_surface' in config:
            self.surface = MultiComponentSurface(
                config['multicomponent_surface'], self.RT)
        elif 'emissive_surface' in config:
            self.surface = MixBBSurface(config['emissive_surface'], self.RT)
        elif 'glint_surface' in config:
            self.surface = GlintSurface(config['glint_surface'], self.RT)
        elif 'iop_surface' in config:
            self.surface = IOPSurface(config['iop_surface'], self.RT)
        else:
            raise ValueError('Must specify a valid surface model')

        bounds, scale, init_val, statevec = [], [], [], []

        # Build state vector for each part of our forward model
        for name in ['surface', 'RT']:
            obj = getattr(self, name)
            inds = len(statevec) + s.arange(len(obj.statevec), dtype=int)
            setattr(self, '%s_inds' % name, inds)
            for b in obj.bounds:
                bounds.append(deepcopy(b))
            for c in obj.scale:
                scale.append(deepcopy(c))
            for v in obj.init_val:
                init_val.append(deepcopy(v))
            for v in obj.statevec:
                statevec.append(deepcopy(v))
        self.bounds = tuple(s.array(bounds).T)
        self.scale = s.array(scale)
        self.init_val = s.array(init_val)
        self.statevec = statevec
        self.wl = self.instrument.wl

        # Capture unmodeled variables
        bvec, bval = [], []
        for name in ['RT', 'instrument', 'surface']:
            obj = getattr(self, name)
            inds = len(bvec) + s.arange(len(obj.bvec), dtype=int)
            setattr(self, '%s_b_inds' % name, inds)
            for b in obj.bval:
                bval.append(deepcopy(b))
            for v in obj.bvec:
                bvec.append(deepcopy(v))
        self.bvec = s.array(bvec)
        self.bval = s.array(bval)
        self.Sb = s.diagflat(pow(self.bval, 2))
        return
Exemplo n.º 16
0
    
           

#%% Compute the EKF results
from KalmanFilterClass import LinearKalmanFilter2D, Data
batch_kalman = []
for i in range(batch_y.shape[0]):
    deltaT = sp.mean(t[1:] - t[0:-1])
    state0 = sp.squeeze(batch_x[i,0,:])
    P0     = sp.identity(4)*0.1
    F0     = sp.array([[1, 0, deltaT, 0],\
                       [0, 1, 0, deltaT],\
                       [0, 0, 1, 0],\
                       [0, 0, 0, 1]])
    H0     = sp.identity(4)
    Q0     = sp.diagflat([0.0005,0.0005,0.1,0.1])
<<<<<<< HEAD
    R0     = sp.diagflat([0.07,0.07,0.07,0.07])
=======
    R0     = sp.diagflat([7,7,7,7])
>>>>>>> ce7f7d394a400190409def1c7004335ae3bc04a8


    data = Data(sp.squeeze(batch_x[i,:,0]),sp.squeeze(batch_x[i,:,1]),sp.squeeze(batch_x[i,:,2]),sp.squeeze(batch_x[i,:,3]),[],[])
    filter1b = LinearKalmanFilter2D(F0, H0, P0, Q0, R0, state0)
    kalman_data = filter1b.process_data(data)
    batch_kalman.append(sp.vstack([kalman_data.x[1:],kalman_data.y[1:], kalman_data.vx[1:], kalman_data.vy[1:]]).T)
    
xk_batch = sp.stack(batch_kalman)
xk_batch - batch_y
print('Kalman loss;'.ljust(12), sp.mean(pow(xk_batch[BATCH_SIZE:,:,:] - batch_y[BATCH_SIZE:,:,:],2)))
#%% Compute the EKF results
from KalmanFilterClass import LinearKalmanFilter3D, Data3D
batch_kalman = []
for i in range(batch_y.shape[0]):
    deltaT = sp.mean(t[1:] - t[0:-1])
    state0 = sp.squeeze(batch_x[i, 0, :])
    P0 = sp.identity(6) * 0.0001
    F0     = sp.array([[1, 0, 0, deltaT, 0, 0],\
                       [0, 1, 0, 0, deltaT, 0],\
                       [0, 0, 1, 0, 0, deltaT],\
                       [0, 0, 0, 1, 0, 0],\
                       [0, 0, 0, 0, 1, 0],
                       [0, 0, 0, 0, 0, 1]])
    H0 = sp.identity(6)
    Q0 = sp.diagflat([0.0001, 0.0001, 0.0001, 0.1, 0.1, 0.1])
    R0 = sp.diagflat([6.0, 6.0, 6.0, 0.5, 0.5, 0.5])
    filter3d = LinearKalmanFilter3D(F0, H0, P0, Q0, R0, state0)

    data = Data3D(sp.squeeze(batch_x[i, :, 0]), sp.squeeze(batch_x[i, :, 1]),
                  sp.squeeze(batch_x[i, :, 2]), sp.squeeze(batch_x[i, :, 3]),
                  [], [])
    filter3d = LinearKalmanFilter3D(F0, H0, P0, Q0, R0, state0)
    kalman_data = filter3d.process_data(data)
    batch_kalman.append(
        sp.vstack([
            kalman_data.x[1:], kalman_data.y[1:], kalman_data.z[1:],
            kalman_data.vx[1:], kalman_data.vy[1:], kalman_data.vz[1:]
        ]).T)

xk_batch = sp.stack(batch_kalman)
Exemplo n.º 18
0
 def Sa(self):
     """Pull the priors from each of the individual RTs.
     """
     return s.diagflat(pow(s.array(self.prior_sigma), 2))
Exemplo n.º 19
0
M=mat(sp.eye(n))
K=mat(sp.eye(n))*2
K[n-1,n-1]=1.
for i in range(n-1):
    K[i+1,i]=-1.
    K[i,i+1]=-1.
F=K.I

lp(M,'mat',title="Mass matrix (=I) M")
lp(K,'mat',title="Stiffness matrix K")
lp(F,'mat',title="Flex.lity matrix F")

# evecs are normalized with respect to M
evals, evecs = eigh(K,M)
L=mat(sp.diagflat(evals))
lp(L,'mat',title="Eigenvalues Matrix L")
lp(evecs,'mat',title="Eigenvectors matrix, \Psi")

for r in ( sp.mat((0,0,0,0.,1.)).T,sp.mat((0,0,0,-2.,1.)).T, sp.mat((1,1,1,1.,1.)).T):
    lp(r.T,'vet',title="Load vector transposed r^T")
    derritz(n,r)
    lp(phi,'mat',title="Derived Ritz Vectors matrix \Phi")
    # lp(T,'mat',title="Tridiagonal DRV matrix, T")

    Gamma=evecs.T*r
    # lp(Gamma.T,'vet',title="Modal partecipation factors")
    Gammh=phi.T*r
    # lp(Gammh.T,'vet',title="DRV's partecipation factors")

Exemplo n.º 20
0
 def Sa(self):
     '''Covariance of prior distribution. Our state vector covariance 
        is diagonal with very loose constraints.'''
     if self.n_state == 0:
         return s.zeros((0, 0), dtype=float)
     return s.diagflat(pow(self.prior_sigma, 2))
Exemplo n.º 21
0
 def Sa(self):
     '''Covariance of prior distribution. Our state vector covariance is 
        diagonal with very loose constraints.'''
     std_factor = 10.0
     return s.diagflat(pow(s.diff(self.bounds) * std_factor, 2))
Exemplo n.º 22
0
def flatDiags(n):
    x = sp.zeros((n,n))
    for i in range(n):
        x +=  sp.diagflat(sp.ones(n-i)*(i+1),i)
    return x
Exemplo n.º 23
0
def diagFlatThree(n):
    return sp.diagflat(sp.arange(1,n+1,1))
Exemplo n.º 24
0
def totalDiags(n):
    x = sp.zeros((n,n))
    for i in range(n):
        x+= sp.diagflat(sp.ones(n-i)/float((i+1)),i) + sp.diagflat(sp.ones(n-i)/float((i+1)),-i)
    x -= sp.diag(sp.ones(n),0)
    return x
Exemplo n.º 25
0
    def write_spectrum(self,
                       row,
                       col,
                       states,
                       meas,
                       geom,
                       flush_immediately=False):
        """Write data from a single inversion to all output buffers."""

        self.writes = self.writes + 1

        if len(states) == 0:

            # Write a bad data flag
            atm_bad = s.zeros(len(self.fm.statevec)) * -9999.0
            state_bad = s.zeros(len(self.fm.statevec)) * -9999.0
            data_bad = s.zeros(self.fm.instrument.n_chan) * -9999.0
            to_write = {
                'estimated_state_file': state_bad,
                'estimated_reflectance_file': data_bad,
                'estimated_emission_file': data_bad,
                'modeled_radiance_file': data_bad,
                'apparent_reflectance_file': data_bad,
                'path_radiance_file': data_bad,
                'simulated_measurement_file': data_bad,
                'algebraic_inverse_file': data_bad,
                'atmospheric_coefficients_file': atm_bad,
                'radiometry_correction_file': data_bad,
                'spectral_calibration_file': data_bad,
                'posterior_uncertainty_file': state_bad
            }

        else:

            # The inversion returns a list of states, which are
            # intepreted either as samples from the posterior (MCMC case)
            # or as a gradient descent trajectory (standard case). For
            # gradient descent the last spectrum is the converged solution.
            if self.iv.method == 'MCMC':
                state_est = states.mean(axis=0)
            else:
                state_est = states[-1, :]

            # Spectral calibration
            wl, fwhm = self.fm.calibration(state_est)
            cal = s.column_stack(
                [s.arange(0, len(wl)), wl / 1000.0, fwhm / 1000.0])

            # If there is no actual measurement, we use the simulated version
            # in subsequent calculations.  Naturally in these cases we're
            # mostly just interested in the simulation result.
            if meas is None:
                meas = self.fm.calc_rdn(state_est, geom)

            # Rodgers diagnostics
            lamb_est, meas_est, path_est, S_hat, K, G = \
                self.iv.forward_uncertainty(state_est, meas, geom)

            # Simulation with noise
            meas_sim = self.fm.instrument.simulate_measurement(meas_est, geom)

            # Algebraic inverse and atmospheric optical coefficients
            x_surface, x_RT, x_instrument = self.fm.unpack(state_est)
            rfl_alg_opt, Ls, coeffs = invert_algebraic(
                self.fm.surface, self.fm.RT, self.fm.instrument, x_surface,
                x_RT, x_instrument, meas, geom)
            rhoatm, sphalb, transm, solar_irr, coszen, transup = coeffs

            L_atm = self.fm.RT.get_L_atm(x_RT, geom)
            L_down_transmitted = self.fm.RT.get_L_down_transmitted(x_RT, geom)
            L_up = self.fm.RT.get_L_up(x_RT, geom)

            atm = s.column_stack(
                list(coeffs[:4]) + [s.ones((len(wl), 1)) * coszen])

            # Upward emission & glint and apparent reflectance
            Ls_est = self.fm.calc_Ls(state_est, geom)
            apparent_rfl_est = lamb_est + Ls_est

            # Radiometric calibration
            factors = s.ones(len(wl))
            if 'radiometry_correction_file' in self.outfiles:
                if 'reference_reflectance_file' in self.infiles:
                    reference_file = self.infiles['reference_reflectance_file']
                    self.rfl_ref = reference_file.read_spectrum(row, col)
                    self.wl_ref = reference_file.wl
                    w, fw = self.fm.instrument.calibration(x_instrument)
                    resamp = resample_spectrum(self.rfl_ref,
                                               self.wl_ref,
                                               w,
                                               fw,
                                               fill=True)
                    meas_est = self.fm.calc_meas(state_est, geom, rfl=resamp)
                    factors = meas_est / meas
                else:
                    logging.warning('No reflectance reference')

            # Assemble all output products
            to_write = {
                'estimated_state_file':
                state_est,
                'estimated_reflectance_file':
                s.column_stack((self.fm.surface.wl, lamb_est)),
                'estimated_emission_file':
                s.column_stack((self.fm.surface.wl, Ls_est)),
                'estimated_reflectance_file':
                s.column_stack((self.fm.surface.wl, lamb_est)),
                'modeled_radiance_file':
                s.column_stack((wl, meas_est)),
                'apparent_reflectance_file':
                s.column_stack((self.fm.surface.wl, apparent_rfl_est)),
                'path_radiance_file':
                s.column_stack((wl, path_est)),
                'simulated_measurement_file':
                s.column_stack((wl, meas_sim)),
                'algebraic_inverse_file':
                s.column_stack((self.fm.surface.wl, rfl_alg_opt)),
                'atmospheric_coefficients_file':
                atm,
                'radiometry_correction_file':
                factors,
                'spectral_calibration_file':
                cal,
                'posterior_uncertainty_file':
                s.sqrt(s.diag(S_hat))
            }

        for product in self.outfiles:
            logging.debug('IO: Writing ' + product)
            self.outfiles[product].write_spectrum(row, col, to_write[product])
            if (self.writes % flush_rate) == 0 or flush_immediately:
                self.outfiles[product].flush_buffers()

        # Special case! samples file is matlab format.
        if 'mcmc_samples_file' in self.output:
            logging.debug('IO: Writing mcmc_samples_file')
            mdict = {'samples': states}
            s.io.savemat(self.output['mcmc_samples_file'], mdict)

        # Special case! Data dump file is matlab format.
        if 'data_dump_file' in self.output:

            logging.debug('IO: Writing data_dump_file')
            x = state_est
            xall = states
            Seps_inv, Seps_inv_sqrt = self.iv.calc_Seps(x, meas, geom)
            meas_est_window = meas_est[self.iv.winidx]
            meas_window = meas[self.iv.winidx]
            xa, Sa, Sa_inv, Sa_inv_sqrt = self.iv.calc_prior(x, geom)
            prior_resid = (x - xa).dot(Sa_inv_sqrt)
            rdn_est = self.fm.calc_rdn(x, geom)
            rdn_est_all = s.array(
                [self.fm.calc_rdn(xtemp, geom) for xtemp in states])

            x_surface, x_RT, x_instrument = self.fm.unpack(x)
            Kb = self.fm.Kb(x, geom)
            xinit = invert_simple(self.fm, meas, geom)
            Sy = self.fm.instrument.Sy(meas, geom)
            cost_jac_prior = s.diagflat(x - xa).dot(Sa_inv_sqrt)
            cost_jac_meas = Seps_inv_sqrt.dot(K[self.iv.winidx, :])
            meas_Cov = self.fm.Seps(x, meas, geom)
            lamb_est, meas_est, path_est, S_hat, K, G = \
                self.iv.forward_uncertainty(state_est, meas, geom)
            A = s.matmul(K, G)

            # Form the MATLAB dictionary object and write to file
            mdict = {
                'K': K,
                'G': G,
                'S_hat': S_hat,
                'prior_mu': xa,
                'Ls': Ls,
                'prior_Cov': Sa,
                'meas': meas,
                'rdn_est': rdn_est,
                'rdn_est_all': rdn_est_all,
                'x': x,
                'xall': xall,
                'x_surface': x_surface,
                'x_RT': x_RT,
                'x_instrument': x_instrument,
                'meas_Cov': meas_Cov,
                'wl': wl,
                'fwhm': fwhm,
                'lamb_est': lamb_est,
                'coszen': coszen,
                'cost_jac_prior': cost_jac_prior,
                'Kb': Kb,
                'A': A,
                'cost_jac_meas': cost_jac_meas,
                'winidx': self.iv.winidx,
                'windows': self.iv.windows,
                'prior_resid': prior_resid,
                'noise_Cov': Sy,
                'xinit': xinit,
                'rhoatm': rhoatm,
                'sphalb': sphalb,
                'transm': transm,
                'transup': transup,
                'solar_irr': solar_irr,
                'L_atm': L_atm,
                'L_down_transmitted': L_down_transmitted,
                'L_up': L_up
            }
            s.io.savemat(self.output['data_dump_file'], mdict)

        # Write plots, if needed
        if len(states) > 0 and 'plot_directory' in self.output:

            if 'reference_reflectance_file' in self.infiles:
                reference_file = self.infiles['reference_reflectance_file']
                self.rfl_ref = reference_file.read_spectrum(row, col)
                self.wl_ref = reference_file.wl

            for i, x in enumerate(states):

                # Calculate intermediate solutions
                lamb_est, meas_est, path_est, S_hat, K, G = \
                    self.iv.forward_uncertainty(state_est, meas, geom)

                plt.cla()
                red = [0.7, 0.2, 0.2]
                wl, fwhm = self.fm.calibration(x)
                xmin, xmax = min(wl), max(wl)
                fig = plt.subplots(1, 2, figsize=(10, 5))
                plt.subplot(1, 2, 1)
                meas_est = self.fm.calc_meas(x, geom)
                for lo, hi in self.iv.windows:
                    idx = s.where(s.logical_and(wl > lo, wl < hi))[0]
                    p1 = plt.plot(wl[idx], meas[idx], color=red, linewidth=2)
                    p2 = plt.plot(wl, meas_est, color='k', linewidth=1)
                plt.title("Radiance")
                plt.title("Measurement (Scaled DN)")
                ymax = max(meas) * 1.25
                ymax = max(meas) + 0.01
                ymin = min(meas) - 0.01
                plt.text(500, ymax * 0.92, "Measured", color=red)
                plt.text(500, ymax * 0.86, "Model", color='k')
                plt.ylabel(r"$\mu$W nm$^{-1}$ sr$^{-1}$ cm$^{-2}$")
                plt.ylabel("Intensity")
                plt.xlabel("Wavelength (nm)")
                plt.ylim([-0.001, ymax])
                plt.ylim([ymin, ymax])
                plt.xlim([xmin, xmax])

                plt.subplot(1, 2, 2)
                lamb_est = self.fm.calc_lamb(x, geom)
                ymax = min(max(lamb_est) * 1.25, 0.10)
                for lo, hi in self.iv.windows:

                    # black line
                    idx = s.where(s.logical_and(wl > lo, wl < hi))[0]
                    p2 = plt.plot(wl[idx], lamb_est[idx], 'k', linewidth=2)
                    ymax = max(max(lamb_est[idx] * 1.2), ymax)

                    # red line
                    if 'reference_reflectance_file' in self.infiles:
                        idx = s.where(
                            s.logical_and(self.wl_ref > lo,
                                          self.wl_ref < hi))[0]
                        p1 = plt.plot(self.wl_ref[idx],
                                      self.rfl_ref[idx],
                                      color=red,
                                      linewidth=2)
                        ymax = max(max(self.rfl_ref[idx] * 1.2), ymax)

                    # green and blue lines - surface components
                    if hasattr(self.fm.surface, 'components') and \
                            self.output['plot_surface_components']:
                        idx = s.where(
                            s.logical_and(self.fm.surface.wl > lo,
                                          self.fm.surface.wl < hi))[0]
                        p3 = plt.plot(self.fm.surface.wl[idx],
                                      self.fm.xa(x, geom)[idx],
                                      'b',
                                      linewidth=2)
                        for j in range(len(self.fm.surface.components)):
                            z = self.fm.surface.norm(
                                lamb_est[self.fm.surface.idx_ref])
                            mu = self.fm.surface.components[j][0] * z
                            plt.plot(self.fm.surface.wl[idx],
                                     mu[idx],
                                     'g:',
                                     linewidth=1)
                plt.text(500, ymax * 0.86, "Remote estimate", color='k')
                if 'reference_reflectance_file' in self.infiles:
                    plt.text(500, ymax * 0.92, "In situ reference", color=red)
                if hasattr(self.fm.surface, 'components') and \
                        self.output['plot_surface_components']:
                    plt.text(500, ymax * 0.80, "Prior mean state ", color='b')
                    plt.text(500,
                             ymax * 0.74,
                             "Surface components ",
                             color='g')
                plt.ylim([-0.0010, ymax])
                plt.xlim([xmin, xmax])
                plt.title("Reflectance")
                plt.title("Source Model")
                plt.xlabel("Wavelength (nm)")
                fn = self.output['plot_directory'] + ('/frame_%i.png' % i)
                plt.savefig(fn)
                plt.close()
Exemplo n.º 26
0
 def Sa(self):
     '''Covariance of prior distribution. Our state vector covariance 
        is diagonal with very loose constraints.'''
     return s.diagflat(pow(self.prior_sigma, 2))
plt.grid(which='both')
plt.legend()
plt.savefig('training_progress1D.png',bbox_inches='tight', dpi=200)



#%% Compute the EKF results
from KalmanFilterClass import LinearKalmanFilter1D, Data1D
batch_kalman = []
deltaT = sp.mean(t[1:] - t[0:-1])

P0     = sp.identity(2)*0.01
F0     = sp.array([[1, deltaT],\
                   [0, 1]])
H0     = sp.identity(2)
Q0     = sp.diagflat([0.0001,0.00001])
R0     = sp.diagflat([1.5,0.01])

for i in range(batch_y.shape[0]):
    data = Data1D(sp.squeeze(batch_x[i,:,0]),sp.squeeze(batch_x[i,:,1]),[])
    state0 = sp.array([0, batch_x[i,0,1]]).T
    filter1b = LinearKalmanFilter1D(F0, H0, P0, Q0, R0, state0)
    kalman_data = filter1b.process_data(data)
    batch_kalman.append(sp.vstack([kalman_data.x[1:], kalman_data.vx[1:]]).T)
    
xk_batch = sp.stack(batch_kalman)
print(xk_batch.shape)
print('Kalman loss;'.ljust(12), sp.mean(pow(xk_batch[BATCH_SIZE:,:,:] - batch_y[BATCH_SIZE:,:,:],2)))
print(xk_batch.shape)
#%% Plot the fit    
plt.figure(figsize=(14,16))
Exemplo n.º 28
0
            print("For iter %i, learning rate %3.6f" % (itr, learning_rate))
            print("Loss ", los)
            print("__________________")

        itr = itr + 1
#%% Compute the EKF results
from KalmanFilterClass import LinearKalmanFilter1D, Data1D

batch_kalman = []
deltaT = sp.mean(t[1:] - t[0:-1])
state0 = sp.array([0, 0]).T
P0 = sp.identity(2) * 0.1
F0     = sp.array([[1, deltaT],\
                   [0, 1]])
H0 = sp.identity(2)
Q0 = sp.diagflat([0.005, 0.0001])
R0 = sp.diagflat([0.25, 0.001])

for i in range(BATCH_SIZE):
    data = Data1D(sp.squeeze(batch_x[i, :, 0]), sp.squeeze(batch_x[i, :, 1]),
                  [])
    filter1b = LinearKalmanFilter1D(F0, H0, P0, Q0, R0, state0)
    kalman_data = filter1b.process_data(data)
    batch_kalman.append(sp.vstack([kalman_data.x[1:], kalman_data.vx[1:]]).T)

xk_batch = sp.stack(batch_kalman)
print(xk_batch.shape)
#%% Plot the fit
plt.figure(figsize=(14, 16))
for batch_idx in range(BATCH_SIZE):
    out_x = sp.squeeze(out[batch_idx, :, 0])