Exemplo n.º 1
0
def unpadding(signal, dim):
    y, x = dim
    sy, sx = signal.shape
    y0 = int(np.trunc((sy-y) / 2))
    x0 = int(np.trunc((sx-x) / 2))
    yt = int(y0 + y)
    xt = int(x0 + x)
    return signal[y0:yt, x0:xt]
Exemplo n.º 2
0
def unpadding(signal, dim):
    y, x = dim
    sy, sx = signal.shape
    y0 = np.trunc((sy-y) / 2)
    x0 = np.trunc((sx-x) / 2)
    yt = y0 + y
    xt = x0 + x
    return signal[y0:yt,x0:xt]
Exemplo n.º 3
0
def zero_padding(signal, squared=True):
    """Creates a new ndarray that """
    check_dim(signal, 2)
    rows, cols = signal.shape
    pow_rows = int(np.ceil(np.log2(rows)))
    pow_cols = int(np.ceil(np.log2(cols)))
    if squared:
        if pow_cols > pow_rows:
            pow_rows = pow_cols
        else:
            pow_cols = pow_rows
    padded_signal = np.zeros((2 ** pow_rows, 2 ** pow_cols),
                             dtype=signal.dtype)
    y_0 = np.trunc((2 ** pow_rows - rows) / 2)
    y_t = y_0 + signal.shape[0]
    x_0 = np.trunc((2 ** pow_cols - cols) / 2)
    x_t = x_0 + signal.shape[1]
    padded_signal[y_0:y_t, x_0:x_t] = signal
    return padded_signal