Exemplo n.º 1
0
def test_dataframe():
    def dfprint(label, val):
        sc.colorize('cyan', f'\n{label}')
        print(val)
        return None

    print('Testing dataframe:')
    a = sc.dataframe(cols=['x', 'y'], data=[[1238, 2], [384, 5], [666, 7]])
    dfprint('Create dataframe', a)
    dfprint('Print out a column', a['x'])
    dfprint('Print out a row', a[0])
    dfprint('Print out an element', a['x', 0])
    a[0] = [123, 6]
    dfprint('Set values for a whole row', a)
    a['y'] = [8, 5, 0]
    dfprint('Set values for a whole column', a)
    a['z'] = [14, 14, 14]
    dfprint('Add new column', a)
    a.addcol('m', [14, 15, 16])
    dfprint('Alternate way to add new column', a)
    a.rmcol('z')
    dfprint('Remove a column', a)
    a.pop(1)
    dfprint('Remove a row', a)
    a.append([555, 2, -1])
    dfprint('Append a new row', a)
    a.insert(1, [660, 3, -1])
    dfprint('Insert a new row', a)
    a.sort()
    dfprint('Sort by the first column', a)
    a.sort('y')
    dfprint('Sort by the second column', a)
    a.addrow([770, 4, -1])
    dfprint('Replace the previous row and sort', a)
    dfprint('Return the row starting with value "555"', a.findrow(555))
    a.rmrow()
    dfprint('Remove last row', a)
    a.rmrow(123)
    dfprint('Remove the row starting with element "123"', a)
    p = a.pandas()
    dfprint('Convert to pandas', p)
    q = p.add(p)
    dfprint('Do a pandas operation', q)
    a.pandas(q)
    dfprint('Convert back', a)

    a.filtercols(['m', 'x'])
    dfprint('Filter to columns m and x', a)
    b = sc.dcp(a)
    dfprint('Dataframe copying:', a == b)
    return a
Exemplo n.º 2
0
def loaddata():
    print('Loading data...')
    dataurl = 'https://raw.githubusercontent.com/rstudio/shiny-examples/master/120-goog-index/data/trend_data.csv'
    rawdata = sc.wget(dataurl).splitlines()
    data = []
    for r,rawline in enumerate(rawdata):
        line = rawline.split(',')
        if r==0: # Read header
            cols = line
        else: # Read data
            tag = line[0]
            yearnum = convertdate(line[1], '%Y-%m-%dT%I:%M:%fZ')
            value = float(line[2]) if r>0 else line[2]
            data.append([tag, yearnum, value])
    df = sc.dataframe(cols=cols, data=data)
    return df
Exemplo n.º 3
0
def common_interventions(region=None,
                         income=None,
                         byplatform=False,
                         max_entries=10,
                         entry=None,
                         label=''):
    sc.heading('Top interventions figure')
    if not byplatform:
        category_list = interv_data['Category 1'].tolist()
    else:
        category_list = interv_data['Platform'].tolist()
    categories = sorted(set(category_list))
    if byplatform:
        order = [0, 2, 1, 3]
        categories = [categories[o] for o in order]
    keycols = ['Short name', 'Category 1', 'Category 2', 'Platform', 'ICER']
    df = sc.dataframe(cols=keycols + ['Percent'], nrows=len(interv_data))
    for key in keycols:
        df[key] = interv_data[key]
    df['Percent'] = 0.0
    df.sort('Short name')

    nspends, nintervs = R[0]['alloc'].shape
    all_counts = pl.zeros((nspends, nintervs))
    include_counts = sc.dcp(all_counts)
    for co, country in enumerate(R.keys()):
        proceed = True
        if region and country_data['who_region', co] != region:
            proceed = False  # Could use continue
        if income and country_data['income_group', co] != income:
            proceed = False  # Could use continue
        if proceed:
            alloc = R[country]['alloc']
            counts = pl.array(alloc > 0, dtype=float)
            if entry is None:
                entries = range(nspends)
            else:
                entries = [entry]
            for i in entries:
                for j in range(nintervs):
                    all_counts[i, j] += 1
                    include_counts[i, j] += counts[i, j]

    for j in range(nintervs):
        include = include_counts[:, j].sum()
        total = all_counts[:, j].sum()
        df['Percent', j] = include / total

    # Ensure sorted!!
    data = sc.odict().make(keys=categories, vals=[])
    counts = sc.odict().make(keys=categories, vals=0)
    df.sort(col='Percent', reverse=True)
    for j in range(nintervs):
        if byplatform:
            this_category = df['Platform', j]
        else:
            this_category = df['Category 1', j]
        if counts[this_category] < max_entries:
            data[this_category].append(df[j].tolist())
            counts[this_category] += 1

    if dosave:
        df.export('results/rapid_top-interventions.xlsx')

    fig = pl.figure(figsize=(9, 17))
    ax = fig.add_axes([0.5, 0.1, 0.45, 0.85])
    count = 50
    ticklocs = []
    ticklabels = []
    if not byplatform:
        darkest = [
            pl.array([0.5, 0.1, 0.0]),
            pl.array([0.0, 0.1, 0.5]),
            pl.array([0.5, 0.0, 0.5]),
            pl.array([0.1, 0.5, 0.0]),
        ]
    else:
        darkest = [
            (0.5, 0.2, 0.0),
            (0.0, 0.2, 0.5),
            (0.0, 0.5, 0.0),
            (0.0, 0.5, 0.3),
        ]
        darkest = darkest[::-1]

    position = df.cols.index('Percent')
    for k, key, vals in sc.odict(data).enumitems():
        count -= 2
        count2 = 0
        pl.text(-2,
                count,
                key,
                fontweight='bold',
                horizontalalignment='right',
                fontsize=6)
        maxval = len(vals)
        for row in vals:
            count -= 1
            count2 += 1
            thiscolor = darkest[k] + (count2 /
                                      (maxval * 2)) * pl.array([1, 1, 1])
            ticklocs.append(count)
            ticklabels.append(row[0])
            percentage = float(row[position]) * 100  # WARNING, fragile!!
            pl.barh(count, percentage, facecolor=thiscolor, edgecolor='none')

    ax.set_yticks(ticklocs)
    ax.set_yticklabels(ticklabels, fontsize=4)
    ax.set_title(label)
    pl.xlim([0, 100])
    pl.xlabel('Frequency of inclusion of intervention in EUHC package (%)')

    if dosave:
        connector = '' if not label else '-'
        pl.savefig(f'results/rapid_top-interventions{connector}{label}.png',
                   dpi=200)
    return fig
Exemplo n.º 4
0
    def makepackage(self,
                    burdenset=None,
                    intervset=None,
                    frpwt=None,
                    equitywt=None,
                    verbose=True,
                    die=False):
        ''' Make results '''
        # Handle inputs
        if burdenset is not None:
            self.burdenset = burdenset  # Warning, name is used both as key and actual set!
        if intervset is not None: self.intervset = intervset
        if frpwt is None: frpwt = 0.25
        if equitywt is None: equitywt = 0.25
        self.frpwt = frpwt
        self.equitywt = equitywt
        burdenset = self.projectref().burden(key=self.burdenset)
        intervset = self.projectref().interv(key=self.intervset)
        intervset.parse()  # Ensure it's parsed
        colnames = intervset.colnames

        # Create new dataframe
        origdata = sc.dcp(intervset.data)
        critical_cols = [
            'active', 'shortname', 'unitcost', 'spend', 'icer', 'frp', 'equity'
        ]
        df = sc.dataframe()
        for col in critical_cols:  # Copy columns over
            df[col] = sc.dcp(origdata[colnames[col]])
        df['parsedbc'] = sc.dcp(origdata['parsedbc'])  # Since not named
        df.filter_out(key=0, col='active', verbose=True)

        # Calculate people covered (spending/unitcost)
        df['coverage'] = hp.arr(
            df['spend']) / (self.eps + hp.arr(df['unitcost']))

        # Pull out DALYS and prevalence
        df.addcol('total_dalys',
                  value=0)  # Value=0 by default, but just to be explicit
        df.addcol('max_dalys', value=0)
        df.addcol('total_prevalence', value=0)
        df.addcol('dalys_averted', value=0)
        notfound = []
        lasterror = None
        for r in range(df.nrows):
            theseburdencovs = df['parsedbc', r]
            for burdencov in theseburdencovs:
                key = burdencov[0]
                val = burdencov[1]  # WARNING, add validation here
                try:
                    thisburden = burdenset.data.findrow(
                        key=key,
                        col=burdenset.colnames['cause'],
                        asdict=True,
                        die=True)
                    df['total_dalys',
                       r] += thisburden[burdenset.colnames['dalys']]
                    df['max_dalys',
                       r] += thisburden[burdenset.colnames['dalys']] * val
                    df['total_prevalence',
                       r] += thisburden[burdenset.colnames['prevalence']]
                except Exception as E:
                    lasterror = E  # Stupid Python 3
                    print('HIIII %s' % str(E))
                    print(type(df['total_dalys', r]))
                    print(type(df['max_dalys', r]))
                    print(type(df['total_prevalence', r]))
                    print(type(thisburden[burdenset.colnames['dalys']]))
                    print(type(thisburden[burdenset.colnames['prevalence']]))
                    notfound.append(key)

        # Validation
        if len(notfound):
            errormsg = 'The following burden(s) were not found: "%s"\nError:\n%s' % (
                notfound, str(lasterror))
            raise hp.HPException(errormsg)
        invalid = []
        for r in range(df.nrows):
            df['dalys_averted',
               r] = df['spend', r] / (self.eps + df['icer', r])
            if df['dalys_averted', r] > df['max_dalys', r]:
                errormsg = 'Data input error: DALYs averted for "%s" greater than total DALYs (%0.0f vs. %0.0f); please reduce total spending, increase ICER, increase DALYs, or increase max coverage' % (
                    df['shortname', r], df['dalys_averted', r], df['max_dalys',
                                                                   r])
                df['dalys_averted', r] = df[
                    'max_dalys',
                    r]  # WARNING, reset to maximum rather than give error if die=False
                invalid.append(errormsg)
        if len(invalid):
            errors = '\n\n'.join(invalid)
            if die: raise Exception(errors)
            else: print(errors)

        # To populate with optimization results and fixed spending
        self.budget = hp.arr(df['spend']).sum()
        df.addcol('opt_spend')
        df.addcol('opt_dalys_averted')
        df.addcol('fixed')

        # Store colors
        nintervs = df.nrows
        colors = sc.gridcolors(nintervs + 2,
                               asarray=True)[2:]  # Skip black and white
        colordict = sc.odict()
        for c, name in enumerate(df['shortname']):
            colordict[name] = colors[c]
        self.colordict = colordict

        self.data = df  # Store it
        if verbose:
            print(
                'Health package %s recalculated from burdenset=%s and intervset=%s'
                % (self.name, self.burdenset, self.intervset))
        return None
Exemplo n.º 5
0
import sciris as sc

count = 0


def dfprint(label, val):
    global count
    count += 1
    sc.colorize('blue', '\n%s. ' % count + label)
    print(val)
    return None


print('Testing dataframe:')
a = sc.dataframe(cols=['x', 'y'], data=[[1238, 2], [384, 5], [666, 7]])
dfprint('Create dataframe', a)
dfprint('Print out a column', a['x'])
dfprint('Print out a row', a[0])
dfprint('Print out an element', a['x', 0])
a[0] = [123, 6]
dfprint('Set values for a whole row', a)
a['y'] = [8, 5, 0]
dfprint('Set values for a whole column', a)
a['z'] = [14, 14, 14]
dfprint('Add new column', a)
a.addcol('m', [14, 15, 16])
dfprint('Alternate way to add new column', a)
a.rmcol('z')
dfprint('Remove a column', a)
a.pop(1)