Exemplo n.º 1
0
def exercise () :
  g = graphics_utils.make_rainbow_gradient(nbins=21)
  assert approx_equal(g[0], (0.0, 0.0, 1.0))
  assert approx_equal(g[10], (0.0, 1.0, 0.0))
  assert approx_equal(g[-1], (1.0, 0.0, 0.0))
  sel = flex.bool([True] * 10)
  sel[5] = False
  r = graphics_utils.color_rainbow(
    selection=sel,
    color_all=False)
  assert approx_equal(r[0], (0.0,0.0,1.0))
  assert approx_equal(r[-1], (1.0,0.0,0.0))
  assert approx_equal(r[4], (0.0,1.0,0.0))
  r2 = graphics_utils.color_rainbow(
    selection=sel,
    color_all=True)
  assert approx_equal(r2[0], (0.0,0.0,1.0))
  assert approx_equal(r2[-1], (1.0,0.0,0.0))
  assert approx_equal(r2[6], (2/3.,1.0,0.0))
  b = flex.double([4.0,5.2,1.7,6.9,9.5,24.3])
  c = graphics_utils.color_by_property(
    properties=b,
    selection=flex.bool(b.size(), True))
  assert approx_equal(c[2], (0.0,0.0,1.0))
  c2 = graphics_utils.scale_selected_colors(
    input_colors=c,
    selection=flex.bool(c.size(), True),
    scale=0.9)
  assert approx_equal(c2[2], (0.0,0.0,0.9))
  c3 = graphics_utils.grayscale_by_property(
    properties=b,
    selection=flex.bool(b.size(), True))
  assert approx_equal(c3[2], (0.95,0.95,0.95))
Exemplo n.º 2
0
def selection_around_to_negate(
      xray_structure,
      selection_within_radius,
      iselection,
      selection_good=None,
      iselection_backbone=None,
      iselection_n_external=None,
      iselection_c_external=None):
  # takes ~0.002 seconds
  if([selection_good,iselection_backbone].count(None)==0):
    selection_backbone = flex.bool(selection_good.size(), iselection_backbone)
    selection_good = selection_good.set_selected(selection_backbone, True)
  sel_around = xray_structure.selection_within(
    radius    = selection_within_radius,
    selection = flex.bool(xray_structure.scatterers().size(), iselection))
  if(selection_good is not None):
    ssb = flex.bool(selection_good.size(), iselection)
    sel_around_minus_self = sel_around.set_selected(ssb, False)
  else:
    sel_around_minus_self = flex.size_t(tuple(
      set(sel_around.iselection()).difference(set(iselection))))
  if(selection_good is not None):
    negate_selection = sel_around_minus_self & selection_good
  else:
    negate_selection = sel_around_minus_self
  if(iselection_n_external is not None and iselection_n_external.size()>0):
    negate_selection[iselection_n_external[0]]=False
  if(iselection_c_external is not None and iselection_c_external.size()>0):
    negate_selection[iselection_c_external[0]]=False
  return negate_selection
Exemplo n.º 3
0
 def __init__(self,maxima):
   self.verbose=False
   #for the next spot, define the universe of possible pixels (working targets)
   # and the map of which pixels have been visited already (pixel_visited)
   working_targets = list(xrange(len(maxima)))
   pixel_visited = flex.bool(len(working_targets),False)
   self.spots = []
   while len(working_targets) > 0:
     # for this spot, indices of pixels known to be in the spot (pixel_members)
     # and a stack of indices of pixels still in process of testing for connections
     #  (connection_stack).  Pop/push operates on the end of stack
     pixel_members = [working_targets[0]]
     connection_stack = [0]
     assert len(pixel_visited)==len(working_targets)
     pixel_visited[0]=True
     while len(connection_stack) > 0:
       idx_current = connection_stack[-1]
       for idx_target in xrange(len(working_targets)):
         if not pixel_visited[idx_target]:
           distance = math.hypot( maxima[working_targets[idx_current]][0]-
                                  maxima[working_targets[idx_target]][0],
                                  maxima[working_targets[idx_current]][1]-
                                  maxima[working_targets[idx_target]][1])
           if distance >= 2.0: continue
           pixel_visited[idx_target]=True
           pixel_members.append(working_targets[idx_target])
           connection_stack.append(idx_target)
       if connection_stack[-1] == idx_current: connection_stack.pop()
     if self.verbose: print "new spot with %d pixels"%len(pixel_members),pixel_members
     for idx in pixel_members:#[working_targets[i] for i in pixel_members]:
       working_targets.remove(idx)
     pixel_visited = flex.bool(len(working_targets),False)
     self.spots.append( [maxima[i] for i in pixel_members] )
Exemplo n.º 4
0
  def get_mask(self, goniometer=None):
    '''Creates a mask merging untrusted pixels with active areas.'''
    from scitbx.array_family import flex
    detector_base = self.detectorbase
    # get effective active area coordinates
    tile_manager = detector_base.get_tile_manager(detector_base.horizons_phil_cache)
    tiling = tile_manager.effective_tiling_as_flex_int(reapply_peripheral_margin = True)
    # get the raw data to get the size of the mask
    data = self.get_raw_data()
    if tiling is None or len(tiling) == 0:
      return None

    # set the mask to the same dimensions as the data
    mask = flex.bool(flex.grid(data.focus()))

    # set active areas to True so they are not masked
    for i in xrange(len(tiling)//4):
      x1,y1,x2,y2=tiling[4*i:(4*i)+4]
      sub_array = flex.bool(flex.grid(x2-x1,y2-y1),True)
      mask.matrix_paste_block_in_place(sub_array,x1,y1)

    # create untrusted pixel mask
    detector = self.get_detector()
    assert len(detector) == 1
    trusted_mask = detector[0].get_trusted_range_mask(data)

    # returns merged untrusted pixels and active areas using bitwise AND (pixels are accepted
    # if they are inside of the active areas AND inside of the trusted range)
    return (mask & trusted_mask,)
Exemplo n.º 5
0
def random_selection(n_candidates, n_keep):
  assert n_keep >= 0 and n_keep <= n_candidates
  n_discard = n_candidates - n_keep
  if (n_keep > n_discard):
    selection = flex.bool(n_candidates, True)
    if (n_discard > 0):
      _random_selection_core(selection, n_keep, False)
  else:
    selection = flex.bool(n_candidates, False)
    if (n_keep > 0):
      _random_selection_core(selection, n_discard, True)
  return selection
Exemplo n.º 6
0
 def psana_mask_to_dials_mask(self, psana_mask):
   if psana_mask.dtype == np.bool:
     psana_mask = flex.bool(psana_mask)
   else:
     psana_mask = flex.bool(psana_mask == 1)
   assert psana_mask.focus() == (32, 185, 388)
   dials_mask = []
   for i in xrange(32):
     dials_mask.append(psana_mask[i:i+1,:,:194])
     dials_mask[-1].reshape(flex.grid(185,194))
     dials_mask.append(psana_mask[i:i+1,:,194:])
     dials_mask[-1].reshape(flex.grid(185,194))
   return dials_mask
Exemplo n.º 7
0
def get_bool_selection_to_keep(big_selection, small_selection):
  """
  given 2 iselections (they are sorted), returns bool selection of size
  big selection showing what are the matches with small selection.
  Rather fast algorithm but may be beneficial to transfer to C++
  O(n+m), where n,m - sizes of selections
  """
  assert big_selection.size >= small_selection.size()
  result = flex.bool(big_selection.size(), False)
  i_in_big = 0
  i_in_small = 0
  size_small = small_selection.size()
  size_big = big_selection.size()
  n_matches = 0
  nw = 0
  while (i_in_big < size_big) and (i_in_small < size_small):
    if big_selection[i_in_big] == small_selection[i_in_small]:
      result[i_in_big] = True
      i_in_big += 1
      i_in_small += 1
      n_matches += 1
    elif big_selection[i_in_big] > small_selection[i_in_small]:
      i_in_small += 1
      nw += 1
    else:
      i_in_big += 1
  # this assert is optional, in general case it is not guaranteed that
  # all numbers from small selection are present in big selection.
  assert n_matches == size_small, "%d %d" % (n_matches, size_small)
  return result
Exemplo n.º 8
0
def combine_maps (
    map_arrays,
    omit_groups,
    background_map_coeffs,
    resolution_factor,
    flatten_background=False,
    sigma_scaling=False,
    control_map=False) :
  """
  For each box, FFT the corresponding omit map coefficients, extract the
  omit regions, and copy them to the combined map, using Marat's asymmetric
  map class to handle symmetry expansion internally.
  """
  assert len(map_arrays) == len(omit_groups)
  space_group = background_map_coeffs.space_group()
  fft_map = background_map_coeffs.fft_map(
    symmetry_flags=maptbx.use_space_group_symmetry,
    resolution_factor=resolution_factor).apply_volume_scaling()
  if (sigma_scaling) :
    fft_map.apply_sigma_scaling()
  background_map = fft_map.real_map_unpadded()
  #print "full map:", background_map.focus()
  if (flatten_background) :
    sel_all = flex.bool(background_map.as_1d().size(), True)
    background_map.as_1d().set_selected(sel_all, 0)
  asym_map = asu_map_ext.asymmetric_map(space_group.type(), background_map)
  origin = asym_map.data().origin()
  n_real_all = background_map.focus()
  n_real_asu = asym_map.data().focus()
  m_real_asu = asym_map.data().all()
  #print "ORIGIN:", origin
  #print "N_REAL:", n_real_asu
  #print "M_REAL:", m_real_asu
  if (not control_map) :
    f2g = maptbx.frac2grid(n_real_all)
    n = 0
    for group, map_coeffs in zip(omit_groups, map_arrays) :
      space_group = map_coeffs.space_group()
      omit_fft_map = map_coeffs.fft_map(
        resolution_factor=resolution_factor,
        symmetry_flags=maptbx.use_space_group_symmetry).apply_volume_scaling()
      if (sigma_scaling) :
        omit_fft_map.apply_sigma_scaling()
      omit_map = omit_fft_map.real_map_unpadded()
      omit_asym_map = asu_map_ext.asymmetric_map(space_group.type(), omit_map)
      assert omit_asym_map.data().focus() == n_real_asu
      for box in group.boxes :
        if (control_map) : continue
        grid_start = tuple(f2g(box.frac_min))
        grid_end = grid_max(f2g(box.frac_max), n_real_asu)
        #print grid_start, grid_end
        for u in range(grid_start[0], grid_end[0]+1) :
          for v in range(grid_start[1], grid_end[1]+1) :
            for w in range(grid_start[2], grid_end[2]+1) :
              try :
                asym_map.data()[(u,v,w)] = omit_asym_map.data()[(u,v,w)]
              except IndexError :
                raise IndexError("n_real: %s  origin: %s  index: %s" %
                  (str(n_real_asu), str(origin), str((u,v,w))))
  return asym_map.map_for_fft()
Exemplo n.º 9
0
def join_selections (sel1, sel2) :
  intersections = sel1.intersection_i_seqs(sel2)
  unique_sel = flex.bool(len(sel1), True)
  unique_sel.set_selected(intersections[0], False)
  sel1 = sel1.select(unique_sel)
  sel1.extend(sel2)
  return flex.sorted(sel1)
Exemplo n.º 10
0
def chains_and_atoms(pdb_hierarchy, secondary_structure_selection,
    out=None) :
  if (out is None) :
    out = sys.stdout
  new_secondary_structure_selection = flex.bool()
  get_class = iotbx.pdb.common_residue_names_get_class
  chains_and_residue_selections = []
  for model in pdb_hierarchy.models():
    for chain in model.chains():
      result = []
      for rg in chain.residue_groups():
        result_ = flex.size_t()
        is_secondary_structure = False
        for ag in rg.atom_groups():
          #print >> out, ag.resname, get_class(name=ag.resname)
          if(get_class(name=ag.resname) == "common_amino_acid" or
             get_class(name=ag.resname) == "common_rna_dna"):
            for atom in ag.atoms():
              result_.append(atom.i_seq)
              if(not is_secondary_structure):
                is_secondary_structure = \
                  secondary_structure_selection[atom.i_seq]
              new_secondary_structure_selection.append(
                secondary_structure_selection[atom.i_seq])
        if(result_.size()>0):
          result.append(
            [result_, is_secondary_structure, rg.resid(), rg.unique_resnames()])
      if(len(result)>0):
        chains_and_residue_selections.append([chain.id, result])
  print >> out, "Considering these chains:"
  for ch in chains_and_residue_selections:
    print >> out, "  chain '%s' (number of residues selected: %d)" % (ch[0], len(ch[1]))
  return chains_and_residue_selections, new_secondary_structure_selection
Exemplo n.º 11
0
def apply_default_filter(database_dict, d_min, max_models_for_default_filter,
                         key = "high_resolution"):
  database_dict = order_by_value(database_dict = database_dict, key = key)
  values = flex.double()
  for v in database_dict[key]: values.append(float(v))
  diff = flex.abs(values-d_min)
  min_val = flex.min(diff)
  i_min_sel = (diff == min_val).iselection()
  assert i_min_sel.size() > 0
  i_min = i_min_sel[i_min_sel.size()//2]
  i_l = max(0, i_min-max_models_for_default_filter//2)
  i_r = min(values.size()-1, i_min+max_models_for_default_filter//2)
  #
  print "apply_default_filter:"
  print "  found data points dmin->higher =", abs(i_l-i_min)
  print "  found data points dmin->lower  =", abs(i_r-i_min)
  imm = min(abs(i_l-i_min), abs(i_r-i_min))
  i_l, i_r = i_min-imm, i_min+imm
  if (imm == 0) :
    if (i_l == 0) :
      i_r = 100
      print "  used data points dmin->higher =", 0
      print "  used data points dmin->lower  =", i_r
    elif (i_l == i_r == len(values) - 1) :
      i_l -= 100
      print "  used data points dmin->higher =", i_l
      print "  used data points dmin->lower  =", 0
  else :
    print "  used data points dmin->higher =", imm
    print "  used data points dmin->lower  =", imm
  #
  selection = flex.bool(values.size(), False)
  for i in xrange(i_l,i_r): selection[i] = True
  return select_dict(database_dict = database_dict, selection = selection)
Exemplo n.º 12
0
def filter_histogram_of_key_value(database_dict, key, max_reject_fraction,
                                  edge_tolerance_small = 1.e-4, n_slots = 3):
  values = database_dict[key]
  new_values = convert_to_numeric(values = values)
  #print flex.min(new_values), flex.max(new_values)
  size = new_values.size()
  #print size
  if(size == 0): return
  while True:
    values = database_dict[key]
    new_values = convert_to_numeric(values = values)
    selection = flex.bool(new_values.size(), True)
    histogram = flex.histogram(data = new_values, n_slots = n_slots)
    l = histogram.data_min()
    for i, s in enumerate(histogram.slots()):
      r = histogram.data_min() + histogram.slot_width() * (i+1)
      r = r+edge_tolerance_small
      l = max(0, l-edge_tolerance_small)
      #print "%8.4f %8.4f %d" % (l, r, s)
      if(s < size * max_reject_fraction):
         selection &= ~((new_values >= l) & (new_values <= r))
      l = r
    #print
    leave, remove = selection.count(True), selection.count(False)
    #print leave, remove
    if(remove == 0): break
    if(size - leave > int(size * max_reject_fraction)): break
    database_dict = select_dict(database_dict = database_dict,
                                selection     = selection)
  return database_dict
Exemplo n.º 13
0
    def generate_linear_background_2d(self, size, bmin, bmax):
        from random import uniform
        from scitbx.array_family import flex
        from scitbx import matrix

        slice_size = (1, size[1], size[2])
        data = flex.double(flex.grid(size), 0)
        mask = flex.bool(flex.grid(size), True)
        params = []
        for k in range(size[0]):
            a00 = uniform(bmin, bmax)
            a01 = uniform(bmin, bmax)
            a10 = uniform(bmin, bmax)
            p00 = matrix.col((0.5, 0.5, a00))
            p01 = matrix.col((8.5, 0.5, a01))
            p10 = matrix.col((0.5, 8.5, a10))
            n = (p01 - p00).cross(p10 - p00)
            b = n[0]
            c = n[1]
            d = n[2]
            a = -(b * 0.5 + c * 0.5 + d * a00)
            a /= -d
            b /= -d
            c /= -d
            for j in range(size[1]):
                for i in range(size[2]):
                    data[k, j, i] = a + b * (i + 0.5) + c * (j + 0.5)
            eps = 1e-7
            assert abs(data[k, 0, 0] - a00) < eps
            assert abs(data[k, 8, 0] - a10) < eps
            assert abs(data[k, 0, 8] - a01) < eps
            params.append((a, b, c))
        return params, data, mask
Exemplo n.º 14
0
 def get_outliers (self, proxies, unit_cell, sites_cart, pdb_atoms,
     sigma_cutoff, outliers_only=True,
     use_segids_in_place_of_chainids=False) :
   from scitbx.array_family import flex
   site_labels = flex.bool(sites_cart.size(), True).iselection()
   sorted_table, not_shown = proxies.get_sorted(
     by_value="residual",
     sites_cart=sites_cart,
     site_labels=site_labels)
   # this can happen for C-alpha-only models, etc.
   if (sorted_table is None) :
     return []
   outliers = []
   for restraint_info in sorted_table :
     (i_seqs, ideal, model, slack, delta, sigma, weight, residual, sym_op_j,
      rt_mx) = restraint_info
     bond_atoms = get_atoms_info(pdb_atoms, iselection=i_seqs,
       use_segids_in_place_of_chainids=use_segids_in_place_of_chainids)
     outlier = bond(
       atoms_info=bond_atoms,
       target=ideal,
       model=model,
       sigma=sigma,
       slack=slack,
       delta=delta,
       residual=residual,
       symop=sym_op_j,
       outlier=True,
       xyz=get_mean_xyz(bond_atoms))
     if (outlier.score > sigma_cutoff) :
       outliers.append(outlier)
     elif (not outliers_only) :
       outlier.outlier=False
       outliers.append(outlier)
   return outliers
Exemplo n.º 15
0
def sieve_fit (sites_fixed,
               sites_moving,
               selection=None,
               frac_discard=0.5) :
  """
  Reference: Chothia & Lesk???
  """
  assert (sites_fixed.size() == sites_moving.size() > 0)
  if (selection is None) :
    selection = flex.bool(sites_fixed.size(), True)
  # step 1: superpose using originally selected atoms
  sites_fixed_aln = sites_fixed.select(selection)
  sites_moving_aln = sites_moving.select(selection)
  lsq_fit_obj = least_squares_fit(
    reference_sites=sites_fixed_aln,
    other_sites=sites_moving_aln)
  sites_moving_new = lsq_fit_obj.other_sites_best_fit()
  # step 2: discard 50% of sites that deviate the most, and superpose again
  deltas = (sites_fixed_aln - sites_moving_new).norms()
  deltas_sorted = flex.sorted(deltas)
  cutoff = deltas_sorted[int((1-frac_discard)*deltas.size())]
  selection = (deltas > cutoff)
  if (selection.count(True) == 0) :
    return lsq_fit_obj
  sites_fixed_aln = sites_fixed_aln.select(selection)
  sites_moving_aln = sites_moving_aln.select(selection)
  lsq_fit_obj = least_squares_fit(
    reference_sites=sites_fixed_aln,
    other_sites=sites_moving_aln)
  return lsq_fit_obj
Exemplo n.º 16
0
def selected_positions(selection,positions):
  """
  Returns only the selected indices in the positions specified in "positions"
  keeping the order

  Args:
    selection (flex.size_t): Atoms selection
    positions (set or list): the allowed positions in the selections

  Returns:
    (flex.size_t, flex.size_t): (selected atoms, atoms, not selected)

  Examples::
    >>>a = flex.size_t([1,2,5,6,4])
    >>>pos = {0,3,4}
    >>>s,d = selected_positions(a,pos)
    >>>list(s)
    [1,6,4]
    >>>list(d)
    [2,5]
  """
  assert isinstance(selection,flex.size_t)
  if isinstance(positions,set): positions = flex.size_t(list(positions))
  if isinstance(positions,list): positions = flex.size_t(positions)
  include = flex.bool(selection.size(),positions)
  not_include = ~include
  return selection.select(include), selection.select(not_include)
Exemplo n.º 17
0
  def tst_identical(self):

    from dials.algorithms.integration.fit import fit_profile
    from scitbx.array_family import flex
    from tst_profile_helpers import gaussian

    # Create profile
    p = gaussian((9, 9, 9), 1, (4, 4, 4), (2, 2, 2))
    s = flex.sum(p)
    p = p / s

    # Copy profile
    c = p.deep_copy()
    b = flex.double(flex.grid(9, 9, 9), 0)
    m = flex.bool(flex.grid(9,9,9), True)

    # Fit
    fit = fit_profile(p, m, c, b)
    I = fit.intensity()
    V = fit.variance()

    # Test intensity is the same
    eps = 1e-7
    assert(abs(I - flex.sum(p)) < eps)
    assert(abs(V - I) < eps)

    print 'OK'
Exemplo n.º 18
0
 def __call__(self, predictions, hkllist, pxlsz):
     if len(self.IT) == 4:
         # We have only one tile, AnnAdaptor chokes in this case but then there is
         # only one choice of nearest neighbour anyway!
         nearest_neighbours = flex.int(len(predictions) * self.NEAR, 0)
     else:
         query = flex.double()
         for pred in predictions:
             query.append(pred[0] / pxlsz)
             query.append(pred[1] / pxlsz)
         self.adapt.query(query)
         assert len(self.adapt.nn) == len(predictions) * self.NEAR
         nearest_neighbours = self.adapt.nn
     selection = flex.bool()
     self.tile_id = flex.int()
     for p in xrange(len(predictions)):
         is_in_active_area = False
         for n in xrange(self.NEAR):
             itile = nearest_neighbours[p * self.NEAR + n]
             if (
                 self.IT[4 * itile] < predictions[p][0] / pxlsz < self.IT[4 * itile + 2]
                 and self.IT[4 * itile + 1] < predictions[p][1] / pxlsz < self.IT[4 * itile + 3]
             ):
                 is_in_active_area = True
                 break
         if is_in_active_area:
             self.tile_id.append(itile)
         selection.append(is_in_active_area)
     assert selection.count(True) == len(self.tile_id)
     return predictions.select(selection), hkllist.select(selection)
Exemplo n.º 19
0
  def tst_with_flat_background_partial(self):

    from dials.algorithms.integration.fit import fit_profile
    from scitbx.array_family import flex
    from tst_profile_helpers import gaussian

    # Create profile
    p = gaussian((9, 9, 9), 1, (4, 4, 4), (2, 2, 2))
    s = flex.sum(p)
    p = p / s

    # Copy profile
    c0 = gaussian((9, 9, 9), 1, (4, 4, 4), (2, 2, 2))
    b = flex.double(flex.grid(9, 9, 9), 5)
    m = flex.bool(flex.grid(9,9,9), True)
    c = c0 + b

    # Get the partial profiles
    pp = p[0:5,:,:]
    mp = m[0:5,:,:]
    cp = c[0:5,:,:]
    bp = b[0:5,:,:]
    c0p = c0[0:5,:,:]

    # Fit
    fit = fit_profile(pp, mp, cp, bp)
    I = fit.intensity()
    V = fit.variance()

    # Test intensity is the same
    eps = 1e-7
    assert(abs(I - flex.sum(c0)) < eps)
    assert(abs(V - (flex.sum(c0p) + flex.sum(bp))) < eps)

    print 'OK'
Exemplo n.º 20
0
def filter_shadowed_reflections(experiments, reflections):
  from dials.util import mask_untrusted_polygon
  from dials.util import is_inside_polygon
  shadowed = flex.bool(reflections.size(), False)
  for expt_id in range(len(experiments)):
    expt = experiments[expt_id]
    imgset = expt.imageset
    masker = imgset.reader().get_format().get_goniometer_shadow_masker()
    detector = expt.detector
    sel = reflections['id'] == expt_id
    isel = sel.iselection()
    x,y,z = reflections['xyzcal.px'].select(isel).parts()
    start, end = expt.scan.get_array_range()
    for i in range(start, end):
      shadow = masker.project_extrema(
        detector, expt.scan.get_angle_from_array_index(i))
      img_sel = (z >= i) & (z < (i+1))
      img_isel = img_sel.iselection()
      for p_id in range(len(detector)):
        panel = reflections['panel'].select(img_isel)
        if shadow[p_id].size() < 4:
          continue
        panel_isel = img_isel.select(panel == p_id)
        inside = is_inside_polygon(
          shadow[p_id],
          flex.vec2_double(x.select(isel.select(panel_isel)),
                           y.select(isel.select(panel_isel))))
        shadowed.set_selected(panel_isel, inside)

  return shadowed
Exemplo n.º 21
0
def finalize_model (pdb_hierarchy,
    xray_structure,
    set_b_iso=None,
    convert_to_isotropic=None,
    selection=None) :
  """
  Prepare a rebuilt model for refinement, optionally including B-factor reset.
  """
  from cctbx import adptbx
  from scitbx.array_family import flex
  pdb_atoms = pdb_hierarchy.atoms()
  if (selection is None) :
    selection = flex.bool(pdb_atoms.size(), True)
  elif isinstance(selection, str) :
    sel_cache = pdb_hierarchy.atom_selection_cache()
    selection = sel_cache.selection(selection)
  for i_seq, atom in enumerate(pdb_atoms) :
    assert (atom.parent() is not None)
    atom.segid = ""
    sc = xray_structure.scatterers()[i_seq]
    sc.label = atom.id_str()
  if (convert_to_isotropic) :
    xray_structure.convert_to_isotropic(selection=selection.iselection())
  if (set_b_iso is not None) :
    if (set_b_iso is Auto) :
      u_iso = xray_structure.extract_u_iso_or_u_equiv()
      set_b_iso = adptbx.u_as_b(flex.mean(u_iso)) / 2
    xray_structure.set_b_iso(value=set_b_iso, selection=selection)
  pdb_hierarchy.adopt_xray_structure(xray_structure)
  pdb_atoms.reset_serial()
  pdb_atoms.reset_i_seq()
  pdb_atoms.reset_tmp()
Exemplo n.º 22
0
 def get_outliers (self, proxies, unit_cell, sites_cart, pdb_atoms,
     sigma_cutoff, outliers_only=True,
     use_segids_in_place_of_chainids=False) :
   import cctbx.geometry_restraints
   from scitbx.array_family import flex
   site_labels = flex.bool(sites_cart.size(), True).iselection()
   sorted_table, n_not_shown = proxies.get_sorted(
     by_value="residual",
     sites_cart=sites_cart,
     site_labels=site_labels,
     unit_cell=unit_cell)
   if (sorted_table is None) : return []
   outliers = []
   for restraint_info in sorted_table :
     (plane_atoms, rms_delta, residual) = restraint_info
     i_seqs = [ a[0] for a in plane_atoms ]
     deviation = max([ a[1] / a[2] for a in plane_atoms ])
     plane_atoms_ = get_atoms_info(pdb_atoms, iselection=i_seqs)
     outlier = planarity(
       atoms_info=plane_atoms_,
       rms_deltas=rms_delta,
       residual=residual,
       delta_max=max([ a[1] for a in plane_atoms ]),
       score=deviation,
       outlier=True,
       xyz=get_mean_xyz(plane_atoms_))
     if (outlier.score > sigma_cutoff) :
       outliers.append(outlier)
     elif (not outliers_only) :
       outlier.outlier=False
       outliers.append(outlier)
   return outliers
Exemplo n.º 23
0
  def tst_with_flat_background(self):

    from dials.algorithms.integration.fit import fit_profile
    from scitbx.array_family import flex
    from tst_profile_helpers import gaussian

    # Create profile
    p = gaussian((9, 9, 9), 1, (4, 4, 4), (2, 2, 2))
    s = flex.sum(p)
    p = p / s

    # Copy profile
    c0 = gaussian((9, 9, 9), 1, (4, 4, 4), (2, 2, 2))
    b = flex.double(flex.grid(9, 9, 9), 5)
    m = flex.bool(flex.grid(9,9,9), True)
    c = c0 + b

    # Fit
    fit = fit_profile(p, m, c, b)
    I = fit.intensity()
    V = fit.variance()

    # Test intensity is the same
    eps = 1e-7
    assert(abs(I - flex.sum(c0)) < eps)
    assert(abs(V - (flex.sum(c0) + flex.sum(b))) < eps)

    print 'OK'
Exemplo n.º 24
0
 def __init__ (self, pdb_hierarchy, atom_selection=None, params=None,
     log=sys.stdout, proxies=None, tables=None, initialize=True):
   assert pdb_hierarchy is not None
   assert not pdb_hierarchy.atoms().extract_i_seq().all_eq(0), ""+\
       "Probably all atoms have i_seq = 0 which is wrong"
   adopt_init_args(self, locals())
   self.bool_atom_selection = None
   if self.atom_selection is None:
     self.bool_atom_selection = flex.bool(pdb_hierarchy.atoms().size(), True)
   else:
     cache = pdb_hierarchy.atom_selection_cache()
     self.bool_atom_selection = cache.selection(atom_selection)
   if params is None:
     params = master_phil.fetch().extract()
   self.params = params
   if initialize:
     if(self.params.rama_potential == "oldfield"):
       self.tables = ramachandran_plot_data(
           plot_cutoff=self.params.oldfield.plot_cutoff)
     else :
       self.tables = load_tables(params)
     # get proxies
     self.extract_proxies()
   else:
     assert proxies is not None
   if(self.params.rama_potential == "oldfield"):
     self.target_phi_psi = self.update_phi_psi_targets(
       sites_cart = self.pdb_hierarchy.atoms().extract_xyz())
Exemplo n.º 25
0
def cross_validate_to_determine_number_of_terms(
    x_obs, y_obs, w_obs=None, min_terms=10, max_terms=25, n_free=100, n_goes=5
):
    if n_goes == None:
        if min_terms < 2:
            min_terms = 2

        free_residuals = []

        free_flags = flex.bool(x_obs.size(), True)
        free_permut = flex.random_permutation(x_obs.size())
        for ii in range(n_free):
            free_flags[free_permut[ii]] = False

        for count in range(min_terms, max_terms):
            fit = chebyshev_lsq_fit(count, x_obs, y_obs, w_obs, free_flags)
            free_residuals.append(fit.free_f)
        return flex.double(free_residuals)

    else:
        if w_obs is None:
            w_obs = flex.double(x_obs.size(), 1)
        free_resid = flex.double(max_terms - min_terms, 0)
        for jj in range(n_goes):
            free_resid += cross_validate_to_determine_number_of_terms(
                x_obs, y_obs, w_obs, min_terms=min_terms, max_terms=max_terms, n_free=n_free, n_goes=None
            )
        return min_terms + flex.min_index(free_resid)
 def __init__(
       self,
       map_data,
       xray_structure,
       ncs_restraints_group_list,
       real_space_gradients_delta,
       refine_selection=None,
       use_ncs_constraints=True,
       restraints_manager=None,
       data_weight=None,
       refine_sites=False,
       refine_transformations=False):
   adopt_init_args(self, locals())
   self.refine_selection = nu.get_refine_selection(
     refine_selection=self.refine_selection,
     number_of_atoms=self.xray_structure.sites_cart().size())
   self.extended_ncs_selection = nu.get_extended_ncs_selection(
     ncs_restraints_group_list=ncs_restraints_group_list,
     refine_selection=self.refine_selection)
   self.unit_cell = self.xray_structure.unit_cell()
   # get selection to refine
   asu_size = xray_structure.scatterers().size()
   if refine_sites:
     # Use all atoms to refine
     self.selection = flex.bool(asu_size, refine_selection)
   elif refine_transformations:
     # use only NCS related atoms (Without the Master NCS copy)
     self.selection = nu.get_ncs_related_selection(
       ncs_restraints_group_list=ncs_restraints_group_list,
       asu_size=asu_size)
Exemplo n.º 27
0
 def base_pair_selection (self, **kwds) :
   # assert 0, "Probably shouldn't be used",
   # used in mmtbx/command_line/find_tls_groups.py
   whole_selection = flex.bool(self.n_atoms)
   for sheet in self.base_pair_selections(**kwds) :
     whole_selection |= sheet
   return whole_selection
Exemplo n.º 28
0
 def __init__ (self, object_id, pdb_hierarchy, atomic_bonds,
     special_position_settings=None,
     base_color=(0.0,1.0,1.0)) :
   self.object_id = object_id
   self.base_color = base_color
   self.draw_mode = None
   self.current_bonds = None
   self.noncovalent_bonds = None
   self.ribbon = None
   self.color_mode = None #"rainbow"
   self.flag_object_visible = True
   self._color_cache = {}
   self.flag_show_hydrogens = False
   self.flag_show_lines = True
   self.flag_show_labels = True
   self.flag_show_points = True
   self.flag_show_spheres = False
   self.flag_show_ribbon = False
   self.flag_show_ellipsoids = False
   self.flag_show_noncovalent_bonds = False
   self.update_structure(pdb_hierarchy=pdb_hierarchy,
     atomic_bonds=atomic_bonds,
     special_position_settings=special_position_settings)
   from scitbx.array_family import flex
   self.use_u_aniso = flex.bool(self.atoms.size())
Exemplo n.º 29
0
 def update_structure (self, pdb_hierarchy, atomic_bonds,
     special_position_settings=None) :
   from scitbx.array_family import flex
   self.pdb_hierarchy = pdb_hierarchy
   self.atoms = pdb_hierarchy.atoms()
   self.atom_count = self.atoms.size()
   assert (self.atom_count == len(atomic_bonds))
   if atomic_bonds is None :
     atomic_bonds = flex.stl_set_unsigned(self.atom_count)
   self.atomic_bonds = atomic_bonds
   self.selection_cache = pdb_hierarchy.atom_selection_cache(
     special_position_settings=special_position_settings)
   #self.index_atoms()
   atom_index = []
   atom_labels = flex.std_string()
   for atom in self.pdb_hierarchy.atoms_with_labels() :
     atom_index.append(atom)
     atom_labels.append(format_atom_label(atom))
   self.atom_index = atom_index
   self.atom_labels = atom_labels
   self.trace_bonds = extract_trace(pdb_hierarchy, self.selection_cache)
   if self.draw_mode is None or self.draw_mode.startswith("trace") :
     self.current_bonds = self.trace_bonds
   else :
     self.current_bonds = self.atomic_bonds
   atom_radii = flex.double(self.atoms.size(), 1.5)
   hydrogen_flag = flex.bool(self.atoms.size(), False)
   for i_seq, atom in enumerate(self.atom_index) :
     if atom.element.strip() in ["H", "D"] :
       atom_radii[i_seq] = 0.75
       hydrogen_flag[i_seq] = True
   self.atom_radii = atom_radii
   self.hydrogen_flag = hydrogen_flag
   self._color_cache = {}
   self.is_changed = True
Exemplo n.º 30
0
 def get_bin_selection (self, bin) :
   from scitbx.array_family import flex
   sel = flex.bool(self._bins.size(), False)
   for k, n in enumerate(self._bins) :
     if (n == bin) :
       sel[k] = True
   return sel
 def __init__(self,
              map_data,
              xray_structure,
              ncs_restraints_group_list,
              real_space_gradients_delta,
              refine_selection=None,
              use_ncs_constraints=True,
              restraints_manager=None,
              data_weight=None,
              refine_sites=False):
     adopt_init_args(self, locals())
     self.refine_selection = nu.get_refine_selection(
         refine_selection=self.refine_selection,
         number_of_atoms=self.xray_structure.sites_cart().size())
     self.extended_ncs_selection = nu.get_extended_ncs_selection(
         ncs_restraints_group_list=ncs_restraints_group_list,
         refine_selection=self.refine_selection)
     self.unit_cell = self.xray_structure.unit_cell()
     # get selection to refine
     asu_size = xray_structure.scatterers().size()
     self.selection = flex.bool(asu_size, refine_selection)
Exemplo n.º 32
0
def iselection_ncs_to_asu(iselection_ncs,ncs_chain_id,hierarchy_asu):
  """
  Convert iselection of NCS related atoms in the NCS copy to the ASU iselection

  Args:
    ncs_len (int)
    ncs_chain_id (str)
    iselection_ncs (flex.size_t)
    hierarchy_asu hierarchy object)

  Returns:
    iselection_asu (flex.size_t)
  """
  asu_len = hierarchy_asu.atoms_size()
  atom_cache = hierarchy_asu.atom_selection_cache().selection
  sel = atom_cache('chain ' + ncs_chain_id)
  sel = sel.iselection(True)
  offset = min(list(sel))
  iselection_ncs += offset
  selection_bool = flex.bool(asu_len,iselection_ncs)
  return selection_bool.iselection(True)
Exemplo n.º 33
0
    def check_flags(self,
                    flags,
                    predictions=None,
                    observations=None,
                    shoeboxes=None,
                    **kwargs):
        '''
    Check the flags are set, if they're not then create a list
    of Trues equal to the number of items given.

    :param flags: The input flags
    :param predictions: The predictions
    :param observations: The observations
    :param shoeboxes: The shoeboxes
    :return: The filtered flags

    '''
        from scitbx.array_family import flex

        # If flags are not set then create a list of Trues
        if flags is None:
            length = 0
            if predictions:
                length = len(predictions)
            if observations:
                if length > 0:
                    assert (length == len(observations))
                else:
                    length = len(observations)
            if shoeboxes:
                if length > 0:
                    assert (length == len(observations))
                else:
                    length = len(shoeboxes)

            # Create an array of flags
            flags = flex.bool(length, True)

        # Return the flags
        return flags
Exemplo n.º 34
0
def reduce_raw_data(raw_data, qmax, bandwidth, level=0.05, q_background=None):
    print
    print " ====  Data reduction ==== "
    print
    print "  Preprocessing of data increases efficiency of shape retrieval procedure."
    print
    print "   -  Interpolation stepsize                           :  %4.3e" % bandwidth
    print "   -  Uniform density criteria:  level is set to       :  %4.3e" % level
    print "                                 maximum q to consider :  %4.3e" % qmax
    qmin_indx = flex.max_index(raw_data.i)
    qmin = raw_data.q[qmin_indx]
    new_data = get_q_array_uniform_body(raw_data,
                                        q_min=qmin,
                                        q_max=qmax,
                                        level=level)
    qmax = new_data.q[-1]
    if qmax > raw_data.q[-1]:
        qmax = raw_data.q[-1]
    print "      Resulting q range to use in  search:   q start   :  %4.3e" % qmin
    print "                                             q stop    :  %4.3e" % qmax
    print
    raw_q = raw_data.q[qmin_indx:]
    raw_i = raw_data.i[qmin_indx:]
    raw_s = raw_data.s[qmin_indx:]
    ### Take care of the background (set zero at very high q) ###
    if (q_background is not None):
        cutoff = flex.bool(raw_q > q_background)
        q_bk_indx = flex.last_index(cutoff, False)
        if (q_bk_indx < raw_q.size()):
            bkgrd = flex.mean(raw_i[q_bk_indx:])
            print "Background correction: I=I-background, where background=", bkgrd
            raw_i = flex.abs(raw_i - bkgrd)

    q = flex.double(range(int(
        (qmax - qmin) / bandwidth) + 1)) * bandwidth + qmin
    raw_data.i = flex.linear_interpolation(raw_q, raw_i, q)
    raw_data.s = flex.linear_interpolation(raw_q, raw_s, q)
    raw_data.q = q

    return raw_data
Exemplo n.º 35
0
def test_manhattan():
    from scitbx.array_family import flex

    from dials.algorithms.image.filter import manhattan_distance

    data = flex.bool(flex.grid(100, 100), True)

    for j in range(100):
        for i in range(100):
            if math.sqrt((j - 50) ** 2 + (i - 50) ** 2) <= 10.5:
                data[j, i] = False

    distance = manhattan_distance(data, True)

    M = distance[1:-1, 1:-1]
    D = data[1:-1, 1:-1]

    selection = D.as_1d().select(M.as_1d() == 0)
    assert selection.all_eq(True)

    while True:
        N = data[0:-2, 1:-1]
        S = data[2:, 1:-1]
        E = data[1:-1, 0:-2]
        W = data[1:-1, 2:]
        selection = M.as_1d() == 1
        neighbours = (
            N.select(selection)
            | S.select(selection)
            | E.select(selection)
            | W.select(selection)
        )
        assert neighbours.all_eq(True)
        indices = flex.size_t(range(len(D))).select(selection)
        for i in indices:
            D[i] = True
        data[1:-1, 1:-1] = D
        M -= 1
        if (M > 0).count(True) == 0:
            break
Exemplo n.º 36
0
 def __init__(self,
     fmodel,
     pdb_hierarchy,
     processed_pdb_file,
     params,
     selection,
     selection_score=None,
     nproc=Auto,
     out=None):
   adopt_init_args(self, locals())
   from scitbx.array_family import flex
   if (self.out is None) : self.out = sys.stdout
   self.sites_start = fmodel.xray_structure.sites_cart().deep_copy()
   if (type(selection).__name__ == 'bool'):
     assert (self.selection.count(True) > 0)
     self.iselection = self.selection.iselection()
   else : # actually an iselection
     assert (len(self.selection) > 0)
     self.iselection = self.selection
     self.selection = flex.bool(self.sites_start.size(), False).set_selected(
       self.iselection, True)
   if (self.selection_score is None):
     self.selection_score = self.selection
   use_mp = (self.params.n_trials > 1)
   assert (params.partial_occupancy is not None)
   if (len(params.partial_occupancy) > 1):
     use_mp = True
   if (not use_mp):
     self._trials = [ self.run_trial(params.partial_occupancy[0]) ]
   else :
     self.out = null_out()
     args = []
     for occ in params.partial_occupancy :
       assert (occ > 0) and (occ <= 1)
       for k in range(self.params.n_trials):
         args.append(occ)
     self._trials = easy_mp.pool_map(
       fixed_func=self.run_trial,
       args=args,
       processes=self.nproc)
Exemplo n.º 37
0
def get_ncs_related_selection(ncs_restraints_group_list, asu_size):
    """
  Args:
    ncs_restraints_group_list (list): list of ncs_restraint_group objects
    asu_size (int): the total size of the ASU

  Returns:
    selection (flex.bool): selection of all ncs related atom in the ASU
  """
    total_master_ncs_selection = set()
    total_ncs_related_selection = set()
    for nrg in ncs_restraints_group_list:
        master_ncs_selection = nrg.master_iselection
        total_master_ncs_selection.update(set(master_ncs_selection))
        for ncs_copy in nrg.copies:
            asu_selection = ncs_copy.iselection
            total_ncs_related_selection.update(set(asu_selection))
    #
    total_ncs_related_selection.update(total_master_ncs_selection)
    ts = flex.size_t(list(total_ncs_related_selection))
    selection = flex.bool(asu_size, ts)
    return selection
Exemplo n.º 38
0
    def predict_for_reflection_table(self,
                                     reflections,
                                     skip_derivatives=False):
        """perform prediction for all reflections in the supplied table"""

        # set the entering flags if this has not been done
        from dials.algorithms.refinement.reflection_manager import calculate_entering_flags
        if "entering" not in reflections:
            reflections['entering'] = calculate_entering_flags(
                reflections, self._experiments)

        # can only predict for experiments that exist and within the scan range
        # any other reflections will be left unchanged
        inc = flex.size_t_range(len(reflections))
        to_keep = flex.bool(len(inc), False)

        for iexp, exp in enumerate(self._experiments):
            sel = reflections['id'] == iexp

            # keep all reflections if there is no rotation axis
            if exp.goniometer is None:
                to_keep.set_selected(sel, True)
                continue

            # trim reflections outside the scan range
            phi = reflections['xyzobs.mm.value'].parts()[2]
            phi_min, phi_max = exp.scan.get_oscillation_range(deg=False)
            passed = (phi >= phi_min) & (phi <= phi_max)
            to_keep.set_selected(sel, passed)

        # determine indices to include and predict on the subset
        inc = inc.select(to_keep)
        sub_refl = reflections.select(inc)
        preds = self._predict_core(sub_refl, skip_derivatives)

        # set updated subset back into place
        reflections.set_selected(inc, preds)

        return reflections
def test_external_lookup():
    from dxtbx.imageset import ExternalLookup

    mask = flex.bool(flex.grid(10, 10), True)
    gain = flex.double(flex.grid(10, 10), 1)
    pedestal = flex.double(flex.grid(10, 10), 2)

    lookup = ExternalLookup()
    lookup.mask.data = dxtbx.format.image.ImageBool(
        dxtbx.format.image.ImageTileBool(mask))
    lookup.gain.data = dxtbx.format.image.ImageDouble(
        dxtbx.format.image.ImageTileDouble(gain))
    lookup.pedestal.data = dxtbx.format.image.ImageDouble(
        dxtbx.format.image.ImageTileDouble(pedestal))

    mask2 = lookup.mask.data.tile(0).data()
    gain2 = lookup.gain.data.tile(0).data()
    pedestal2 = lookup.pedestal.data.tile(0).data()

    assert mask2.all_eq(mask)
    assert gain2.all_eq(gain)
    assert pedestal2.all_eq(pedestal)
Exemplo n.º 40
0
def test_combine_with_user_static_mask(dials_data, tmpdir):
    master_h5 = (dials_data("image_examples").join(
        "SACLA-MPCCD-Phase3-21528-5images.h5").strpath)
    assert FormatHDF5SaclaMPCCD.understand(master_h5)

    expts_from_filename = ExperimentListFactory.from_filenames([master_h5])
    for i, expt in enumerate(expts_from_filename):
        mask = []
        for panel in expt.detector:
            m = flex.bool(flex.grid(reversed(panel.get_image_size())), True)
            mask_untrusted_resolution_range(m, expt.beam, panel, 0, 2.23)
            mask.append(m)
        mask = tuple(mask)
        # exact number of masked pixels varies with wavelength between experiments
        assert [_.count(False) for _ in mask
                ] == pytest.approx([50643, 0, 0, 48003, 48356, 0, 0, 52191],
                                   abs=1e3)
        mask_file = tmpdir.join("pixel_%i.mask" % i)
        with mask_file.open("wb") as f:
            pickle.dump(mask, f)
        expt.imageset.external_lookup.mask.filename = mask_file.strpath
        expt.imageset.external_lookup.mask.data = ImageBool(mask)

    expts_from_dict = ExperimentListFactory.from_dict(
        expts_from_filename.to_dict())
    imageset = expts_from_dict[0].imageset
    mask = imageset.get_mask(0)
    assert len(mask) == 8
    assert [_.count(False) for _ in mask] == [
        65332,
        24296,
        24296,
        63335,
        63660,
        24296,
        24296,
        66691,
    ]
    imageset.reader().nullify_format_instance()
Exemplo n.º 41
0
 def __call__(self, omit_group):
     from scitbx.array_family import flex
     fmodel_tmp = self.fmodel.deep_copy()
     xrs_omit = fmodel_tmp.xray_structure.deep_copy_scatterers()
     xrs_omit.set_occupancies(self.occupancy,
                              selection=omit_group.selection)
     if (self.selection_delete is not None):
         selection_partial = flex.bool(xrs_omit.scatterers().size(), False)
         selection_partial.set_selected(omit_group.selection, True)
         selection_delete = selection_partial & self.selection_delete
         n_del = selection_delete.count(True)
         if (n_del > 0):
             #print "setting %d waters to zero occupancy" % n_del
             xrs_omit.set_occupancies(0., selection=selection_delete)
     fmodel_tmp.update_xray_structure(xrs_omit,
                                      update_f_mask=False,
                                      update_f_calc=True)
     return fmodel_tmp.map_coefficients(
         map_type=self.map_type,
         fill_missing=self.fill_missing_f_obs,
         exclude_free_r_reflections=self.exclude_free_r_reflections,
         merge_anomalous=True)
Exemplo n.º 42
0
def extract_sites_for_alignment(chain_obj):
    """Extract sequence and sites of c-alphas - adapted from mmtbx.command_line.super"""

    seq = []
    sites = flex.vec3_double()
    use_sites = flex.bool()
    for resi in chain_obj.conformers()[0].residues():
        if (   iotbx.pdb.common_residue_names_get_class(name=resi.resname) != "common_amino_acid"):
            continue
        resn = resi.resname
        single = iotbx.pdb.amino_acid_codes.one_letter_given_three_letter[resn]
        seq.append(single)
        use = False
        xyz = (0,0,0)
        for atom in resi.atoms():
            if (atom.name == " CA "):
              xyz = atom.xyz
              use = True
              break
        sites.append(xyz)
        use_sites.append(use)
    return "".join(seq), sites, use_sites
Exemplo n.º 43
0
def setup_helix_example(pdb_name = "m00_good.pdb",
                        mtz_name = "m00_good.mtz"):
  # Read good model and compute data from it.
  xrs_good = iotbx.pdb.input(
    file_name = os.path.join(qr_unit_tests_data,
    pdb_name )).xray_structure_simple()
  f_obs = abs(xrs_good.structure_factors(d_min=1.5).f_calc())
  r_free_flags_data = flex.bool()
  for i in range(f_obs.data().size()):
    if(i%10 == 0): r_free_flags_data.append(True)
    else:          r_free_flags_data.append(False)
  r_free_flags = f_obs.array(data = r_free_flags_data)
  mtz_dataset = f_obs.as_mtz_dataset(column_root_label="F-obs")
  mtz_dataset.add_miller_array(
    miller_array      = r_free_flags,
    column_root_label = "R-free-flags")
  mtz_object = mtz_dataset.mtz_object()
  mtz_object.write(file_name = mtz_name)
  xrs_poor = iotbx.pdb.input(
    file_name = os.path.join(qr_unit_tests_data,
      "m00_poor.pdb")).xray_structure_simple()
  return xrs_good,xrs_poor,f_obs,r_free_flags
Exemplo n.º 44
0
    def resolution_filter(self):
        """Filter arrays on resolution."""
        if not self.params.d_min and self.params.min_completeness:
            # Update self.params.d_min using resolution estimate
            params = resolution_analysis.phil_defaults.extract().resolution
            params.nbins = self.params.resolution_bins
            r = resolution_analysis.Resolutionizer(self.intensities, params)
            self.params.d_min = r.resolution(
                resolution_analysis.metrics.COMPLETENESS,
                limit=self.params.min_completeness,
            ).d_min
            logger.info("Estimated d_min: %.2f", self.params.d_min)

        if self.params.d_min or self.params.d_max:
            sel = flex.bool(self.intensities.size(), True)
            d_spacings = self.intensities.d_spacings().data()
            if self.params.d_min:
                sel &= d_spacings >= self.params.d_min
            if self.params.d_max:
                sel &= d_spacings <= self.params.d_max
            self.intensities = self.intensities.select(sel)
            self.dose = self.dose.select(sel)
Exemplo n.º 45
0
def test_with_flat_background_partial():

  from dials.algorithms.integration.fit import ProfileFitter
  from scitbx.array_family import flex
  from numpy.random import seed
  seed(0)

  # Create profile
  p = gaussian((9, 9, 9), 1, (4, 4, 4), (2, 2, 2))
  s = flex.sum(p)
  p = p / s

  # Copy profile
  c0 = add_poisson_noise(100 * p)
  b = flex.double(flex.grid(9, 9, 9), 1)
  m = flex.bool(flex.grid(9,9,9), True)
  c = c0 + add_poisson_noise(b)

  # Get the partial profiles
  pp = p[0:5,:,:]
  mp = m[0:5,:,:]
  cp = c[0:5,:,:]
  bp = b[0:5,:,:]
  c0p = c0[0:5,:,:]

  # Fit
  fit = ProfileFitter(cp, bp, mp, pp)
  I = fit.intensity()
  V = fit.variance()
  assert fit.niter() < fit.maxiter()

  Iknown = 99.06932141277105
  Vknown = 504.06932141277105

  # Test intensity is the same
  eps = 1e-7
  assert(abs(I[0] - Iknown) < eps)
  assert(abs(V[0] - Vknown) < eps)
Exemplo n.º 46
0
def filter_shadowed_reflections(experiments,
                                reflections,
                                experiment_goniometer=False):
    from dials.util.ext import is_inside_polygon
    from scitbx.array_family import flex
    shadowed = flex.bool(reflections.size(), False)
    for expt_id in range(len(experiments)):
        expt = experiments[expt_id]
        imageset = expt.imageset
        if experiment_goniometer:
            masker = imageset.masker().format_class(
                imageset.paths()[0]).get_goniometer_shadow_masker(
                    goniometer=expt.goniometer)
        else:
            masker = imageset.masker().format_class(
                imageset.paths()[0]).get_goniometer_shadow_masker()
        detector = expt.detector
        sel = reflections['id'] == expt_id
        isel = sel.iselection()
        x, y, z = reflections['xyzcal.px'].select(isel).parts()
        start, end = expt.scan.get_array_range()
        for i in range(start, end):
            shadow = masker.project_extrema(
                detector, expt.scan.get_angle_from_array_index(i))
            img_sel = (z >= i) & (z < (i + 1))
            img_isel = img_sel.iselection()
            for p_id in range(len(detector)):
                panel = reflections['panel'].select(img_isel)
                if shadow[p_id].size() < 4:
                    continue
                panel_isel = img_isel.select(panel == p_id)
                inside = is_inside_polygon(
                    shadow[p_id],
                    flex.vec2_double(x.select(isel.select(panel_isel)),
                                     y.select(isel.select(panel_isel))))
                shadowed.set_selected(panel_isel, inside)

    return shadowed
Exemplo n.º 47
0
def apply_default_filter(database_dict,
                         d_min,
                         max_models_for_default_filter,
                         key="high_resolution"):
    database_dict = order_by_value(database_dict=database_dict, key=key)
    values = flex.double()
    for v in database_dict[key]:
        values.append(float(v))
    diff = flex.abs(values - d_min)
    min_val = flex.min(diff)
    i_min_sel = (diff == min_val).iselection()
    assert i_min_sel.size() > 0
    i_min = i_min_sel[i_min_sel.size() // 2]
    i_l = max(0, i_min - max_models_for_default_filter // 2)
    i_r = min(values.size() - 1, i_min + max_models_for_default_filter // 2)
    #
    print "apply_default_filter:"
    print "  found data points dmin->higher =", abs(i_l - i_min)
    print "  found data points dmin->lower  =", abs(i_r - i_min)
    imm = min(abs(i_l - i_min), abs(i_r - i_min))
    i_l, i_r = i_min - imm, i_min + imm
    if (imm == 0):
        if (i_l == 0):
            i_r = 100
            print "  used data points dmin->higher =", 0
            print "  used data points dmin->lower  =", i_r
        elif (i_l == i_r == len(values) - 1):
            i_l -= 100
            print "  used data points dmin->higher =", i_l
            print "  used data points dmin->lower  =", 0
    else:
        print "  used data points dmin->higher =", imm
        print "  used data points dmin->lower  =", imm
    #
    selection = flex.bool(values.size(), False)
    for i in xrange(i_l, i_r):
        selection[i] = True
    return select_dict(database_dict=database_dict, selection=selection)
Exemplo n.º 48
0
 def __call__(self, fragment):
     from scitbx.array_family import flex
     frag_selection = flex.bool(self.pdb_atoms.size(), fragment)
     sites_cart_orig = self.fmodel.xray_structure.sites_cart()
     sites_start = sites_cart_orig.select(fragment)
     atom_start = self.pdb_atoms[fragment[0]].fetch_labels()
     atom_end = self.pdb_atoms[fragment[-1]].fetch_labels()
     label = "%s%s-%s" % (atom_start.chain_id, atom_start.resid(),
                          atom_end.resid())
     # XXX should the partial occupancy be determined automatically?
     two_fofc_map, fofc_map = alt_confs.get_partial_omit_map(
         fmodel=self.fmodel.deep_copy(),
         selection=(frag_selection & self.sele_main_conf),
         selection_delete=(frag_selection & ~(self.sele_main_conf)),
         partial_occupancy=0.6)
     target_map = two_fofc_map
     if (self.rsr_fofc_map_target):
         target_map = fofc_map
     box = self.make_box(selection=frag_selection, target_map=target_map)
     box.restrain_atoms(selection=alt_confs.SELECTION_OLD,
                        reference_sigma=0.02,
                        reset_first=True)
     box.restrain_atoms(selection=alt_confs.SELECTION_NEW_REBUILT,
                        reference_sigma=0.05,
                        reset_first=False)
     # first fix the geometry of adjacent residues
     box.real_space_refine(alt_confs.SELECTION_NEW_SPLIT)
     # now the entire B conformer
     box.real_space_refine(alt_confs.SELECTION_NEW)
     sites_cart_refined = box.update_original_coordinates()
     sites_new = sites_cart_refined.select(fragment)
     self.fmodel.xray_structure.set_sites_cart(sites_cart_orig)
     self.pdb_atoms.set_xyz(sites_cart_orig)
     return alt_confs.refined_fragment(
         label=label,
         selection=frag_selection,
         sites_cart=sites_cart_refined,
         rmsd=sites_new.rms_difference(sites_start))
Exemplo n.º 49
0
def convert_to_numeric(values):
    is_digit_selection = flex.bool()
    for kv in values:
        flag = True
        try:
            tmp = float(kv)
        except Exception:
            flag = False
        is_digit_selection.append(flag)
    if (is_digit_selection.count(False) > 0):
        raise RuntimeError("Non-numerical values.")
    points = 0
    for kv in values:
        points += kv.count(".")
    if (points == 0):
        new_values = flex.int()
        for kv in values:
            new_values.append(int(kv))
    else:
        new_values = flex.double()
        for kv in values:
            new_values.append(float(kv))
    return new_values
Exemplo n.º 50
0
def test_deconvolve_zero():
  from dials.algorithms.integration.fit import ProfileFitter
  from scitbx.array_family import flex
  from numpy.random import seed
  seed(0)

  I0 = [1000, 2000, 3000]

  # Create profile
  p = generate_3_profiles()


  # Copy profile
  c = flex.double(flex.grid(40, 9, 9), 0)
  b = flex.double(flex.grid(40, 9, 9), 0)
  m = flex.bool(flex.grid(40,9,9), True)

  # Fit
  passed = False
  with pytest.raises(Exception):
    fit = ProfileFitter(c, b, m, p)
    I = fit.intensity()
    V = fit.variance()
Exemplo n.º 51
0
    def run(self):
        from dials.algorithms.image.fill_holes import simple_fill
        from scitbx.array_family import flex
        from math import sqrt

        mask = flex.bool(flex.grid(100, 100), True)
        data = flex.double(flex.grid(100, 100), True)

        for j in range(100):
            for i in range(100):
                data[j, i] = 10 + j * 0.01 + i * 0.01
                if sqrt((j - 50)**2 + (i - 50)**2) <= 10.5:
                    mask[j, i] = False
                    data[j, i] = 0

        result = simple_fill(data, mask)
        known = data.as_1d().select(mask.as_1d())
        filled = result.as_1d().select(mask.as_1d() == False)
        assert flex.max(filled) <= flex.max(known)
        assert flex.min(filled) >= flex.min(known)

        # Test passed
        print 'OK'
Exemplo n.º 52
0
def cross_validate_to_determine_number_of_terms(x_obs,
                                                y_obs,
                                                w_obs=None,
                                                min_terms=10,
                                                max_terms=25,
                                                n_free=100,
                                                n_goes=5):
    if (n_goes == None):
        if (min_terms < 2):
            min_terms = 2

        free_residuals = []

        free_flags = flex.bool(x_obs.size(), True)
        free_permut = flex.random_permutation(x_obs.size())
        for ii in range(n_free):
            free_flags[free_permut[ii]] = False

        for count in range(min_terms, max_terms):
            fit = chebyshev_lsq_fit(count, x_obs, y_obs, w_obs, free_flags)
            free_residuals.append(fit.free_f)
        return (flex.double(free_residuals))

    else:
        if w_obs is None:
            w_obs = flex.double(x_obs.size(), 1)
        free_resid = flex.double(max_terms - min_terms, 0)
        for jj in range(n_goes):
            free_resid += cross_validate_to_determine_number_of_terms(
                x_obs,
                y_obs,
                w_obs,
                min_terms=min_terms,
                max_terms=max_terms,
                n_free=n_free,
                n_goes=None)
        return (min_terms + flex.min_index(free_resid))
Exemplo n.º 53
0
 def update_structure(self,
                      pdb_hierarchy,
                      atomic_bonds,
                      special_position_settings=None):
     from scitbx.array_family import flex
     self.pdb_hierarchy = pdb_hierarchy
     self.atoms = pdb_hierarchy.atoms()
     self.atom_count = self.atoms.size()
     assert (self.atom_count == len(atomic_bonds))
     if atomic_bonds is None:
         atomic_bonds = flex.stl_set_unsigned(self.atom_count)
     self.atomic_bonds = atomic_bonds
     self.selection_cache = pdb_hierarchy.atom_selection_cache(
         special_position_settings=special_position_settings)
     #self.index_atoms()
     atom_index = []
     atom_labels = flex.std_string()
     for atom in self.pdb_hierarchy.atoms_with_labels():
         atom_index.append(atom)
         atom_labels.append(format_atom_label(atom))
     self.atom_index = atom_index
     self.atom_labels = atom_labels
     self.trace_bonds = extract_trace(pdb_hierarchy, self.selection_cache)
     if self.draw_mode is None or self.draw_mode.startswith("trace"):
         self.current_bonds = self.trace_bonds
     else:
         self.current_bonds = self.atomic_bonds
     atom_radii = flex.double(self.atoms.size(), 1.5)
     hydrogen_flag = flex.bool(self.atoms.size(), False)
     for i_seq, atom in enumerate(self.atom_index):
         if atom.element.strip() in ["H", "D"]:
             atom_radii[i_seq] = 0.75
             hydrogen_flag[i_seq] = True
     self.atom_radii = atom_radii
     self.hydrogen_flag = hydrogen_flag
     self._color_cache = {}
     self.is_changed = True
Exemplo n.º 54
0
def reindex_refl_by_coset(refl,data,symms,uuids,co,anomalous_flag = False, verbose=True):
  if verbose:
    cache_miller = refl["miller_index"].deep_copy()
    cache_asu = refl["miller_index_asymmetric"].deep_copy()

  for icoset,partition in enumerate(co.partitions):
    if icoset==0: continue # no change of basis

    cb_op = change_of_basis_op(partition[0])
    mi_new = cb_op.apply(refl["miller_index"])
    mi_asu_new = mi_new.deep_copy()
    miller.map_to_asu(symms[0].space_group().info().type(), anomalous_flag, mi_asu_new)

    # now select only those expts assigned to that coset
    good_refls = flex.bool(len(refl), False)
    all_expt_id = list(data["experiment"])
    all_coset = list(data["coset"]) # would like to understand how to use pandas rather than Python list
    for iexpt in range(len(symms)):
        iexpt_id = uuids[iexpt]
        this_coset = all_coset[ all_expt_id.index(iexpt_id) ]
        if this_coset == icoset:
          good_refls |= refl["exp_id"] == iexpt_id

    re_millers = mi_new.select(good_refls)
    re_asu = mi_asu_new.select(good_refls)

    refl["miller_index"].set_selected(good_refls, re_millers)
    refl["miller_index_asymmetric"].set_selected(good_refls, re_asu)
  if verbose:
    for x in range(len(refl)):
      print ("%3d"%x,refl["exp_id"][x],
             all_coset[ all_expt_id.index(refl["exp_id"][x]) ],
             "%10s"%(change_of_basis_op(co.partitions[   all_coset[ all_expt_id.index(refl["exp_id"][x]) ]   ][0]).as_hkl()),
             "(%4d%4d%4d)"%(cache_miller[x]), "(%4d%4d%4d)"%(cache_asu[x]),
             "(%4d%4d%4d)"%(refl["miller_index"][x]), "(%4d%4d%4d)"%(refl["miller_index_asymmetric"][x]))

  return refl
Exemplo n.º 55
0
def chains_and_atoms(pdb_hierarchy, secondary_structure_selection, out=None):
    if (out is None):
        out = sys.stdout
    new_secondary_structure_selection = flex.bool()
    get_class = iotbx.pdb.common_residue_names_get_class
    chains_and_residue_selections = []
    for model in pdb_hierarchy.models():
        for chain in model.chains():
            result = []
            for rg in chain.residue_groups():
                result_ = flex.size_t()
                is_secondary_structure = False
                for ag in rg.atom_groups():
                    #print >> out, ag.resname, get_class(name=ag.resname)
                    if (get_class(name=ag.resname) == "common_amino_acid"
                            or get_class(name=ag.resname) == "common_rna_dna"):
                        for atom in ag.atoms():
                            result_.append(atom.i_seq)
                            if (not is_secondary_structure):
                                is_secondary_structure = \
                                  secondary_structure_selection[atom.i_seq]
                            new_secondary_structure_selection.append(
                                secondary_structure_selection[atom.i_seq])
                if (result_.size() > 0):
                    result.append([
                        result_, is_secondary_structure,
                        rg.resid(),
                        rg.unique_resnames()
                    ])
            if (len(result) > 0):
                chains_and_residue_selections.append([chain.id, result])
    print("Considering these chains:", file=out)
    for ch in chains_and_residue_selections:
        print("  chain '%s' (number of residues selected: %d)" %
              (ch[0], len(ch[1])),
              file=out)
    return chains_and_residue_selections, new_secondary_structure_selection
Exemplo n.º 56
0
 def _expand(self):
     expansion = expand(pdb_hierarchy=self.pdb_hierarchy,
                        crystal_symmetry=self.crystal_symmetry,
                        select_within_radius=10.0)
     pdb_hierarchy_super = expansion.ph_super_sphere
     pdb_hierarchy_super.write_pdb_file(file_name="supersphere.pdb",
                                        crystal_symmetry=expansion.cs_box)
     self.crystal_symmetry_ss = expansion.cs_box
     if (self.restraints_source.source_of_restraints_qm()):
         self.pdb_hierarchy_super_completed = model_completion.run(
             #pdb_hierarchy         = pdb_hierarchy_super,
             crystal_symmetry=expansion.cs_box,
             model_completion=False,
             pdb_filename="supersphere.pdb",
             original_pdb_filename=None)
     else:
         self.pdb_hierarchy_super_completed = pdb_hierarchy_super
     selection = flex.bool(
         self.pdb_hierarchy_super_completed.atoms().size(), False)
     self.selection = selection.set_selected(
         flex.size_t(xrange(self.pdb_hierarchy.atoms().size())), True)
     self.restraints_manager = self.restraints_source.update(
         pdb_hierarchy=self.pdb_hierarchy_super_completed,
         crystal_symmetry=expansion.cs_box)
Exemplo n.º 57
0
  def tst_with_noisy_flat_background_partial(self):

    from dials.algorithms.integration.fit import fit_profile
    from scitbx.array_family import flex
    from tst_profile_helpers import gaussian

    # Create profile
    p = gaussian((9, 9, 9), 1, (4, 4, 4), (2, 2, 2))
    s = flex.sum(p)
    p = p / s

    # Copy profile
    c0 = gaussian((9, 9, 9), 1, (4, 4, 4), (2, 2, 2))
    n = flex.random_double(9 * 9 * 9)
    b = flex.double(flex.grid(9, 9, 9), 5) + n
    m = flex.bool(flex.grid(9,9,9), True)
    c = c0 + b

    # Get the partial profiles
    pp = p[0:5,:,:]
    mp = m[0:5,:,:]
    cp = c[0:5,:,:]
    bp = b[0:5,:,:]
    c0p = c0[0:5,:,:]

    # Fit
    fit = fit_profile(pp, mp, cp, bp)
    I = fit.intensity()
    V = fit.variance()

    # Test intensity is the same
    eps = 1e-7
    assert(abs(I - flex.sum(c0)) < eps)
    assert(abs(V - (flex.sum(c0p) + flex.sum(bp))) < eps)

    print 'OK'
Exemplo n.º 58
0
def test_pickle():
    from dials.model.data import PixelList
    from scitbx.array_family import flex
    size = (100, 100)
    sf = 10
    image = flex.double(flex.grid(size))
    mask = flex.bool(flex.grid(size))
    for i in range(len(image)):
        image[i] = random.randint(0, 100)
        mask[i] = bool(random.randint(0, 1))
    pl = PixelList(sf, image, mask)
    assert pl.size() == size
    assert pl.frame() == sf

    import six.moves.cPickle as pickle

    obj = pickle.dumps(pl)
    pl2 = pickle.loads(obj)

    assert pl2.size() == size
    assert pl2.frame() == sf
    assert len(pl2) == len(pl)
    assert pl2.index().all_eq(pl.index())
    assert pl2.value().all_eq(pl.value())
Exemplo n.º 59
0
def run (args, image = None):
  from xfel import radial_average
  from scitbx.array_family import flex
  import os, sys
  import dxtbx

  # Parse input
  try:
    n = len(args)
  except Exception:
    params = args
  else:
    user_phil = []
    for arg in args:
      if (not "=" in arg):
        try :
          user_phil.append(libtbx.phil.parse("""file_path=%s""" % arg))
        except ValueError:
          raise Sorry("Unrecognized argument '%s'" % arg)
      else:
        try:
          user_phil.append(libtbx.phil.parse(arg))
        except RuntimeError as e:
          raise Sorry("Unrecognized argument '%s' (error: %s)" % (arg, str(e)))
    params = master_phil.fetch(sources=user_phil).extract()
  if image is None:
    if params.file_path is None or len(params.file_path) == 0 or not all([os.path.isfile(f) for f in params.file_path]):
      master_phil.show()
      raise Usage("file_path must be defined (either file_path=XXX, or the path alone).")
  assert params.n_bins is not None
  assert params.verbose is not None
  assert params.output_bins is not None

  # Allow writing to a file instead of stdout
  if params.output_file is None:
    logger = sys.stdout
  else:
    logger = open(params.output_file, 'w')
    logger.write("%s "%params.output_file)

  if params.show_plots:
    from matplotlib import pyplot as plt
    import numpy as np
    colormap = plt.cm.gist_ncar
    plt.gca().set_color_cycle([colormap(i) for i in np.linspace(0, 0.9, len(params.file_path))])

  if params.mask is not None:
    params.mask = easy_pickle.load(params.mask)

  if image is None:
    iterable = params.file_path
    load_func = lambda x: dxtbx.load(x)
  else:
    iterable = [image]
    load_func = lambda x: x

  # Iterate over each file provided
  for item in iterable:
    img = load_func(item)
    try:
      n_images = img.get_num_images()
      subiterable = xrange(n_images)
    except AttributeError:
      n_images = None
      subiterable = [0]
    for image_number in subiterable:
      if n_images is None:
        beam = img.get_beam()
        detector = img.get_detector()
      else:
        beam = img.get_beam(image_number)
        detector = img.get_detector(image_number)
      s0 = col(beam.get_s0())

      # Search the detector for the panel farthest from the beam. The number of bins in the radial average will be
      # equal to the farthest point from the beam on the detector, in pixels, unless overridden at the command line
      panel_res = [p.get_max_resolution_at_corners(s0) for p in detector]
      farthest_panel = detector[panel_res.index(min(panel_res))]
      size2, size1 = farthest_panel.get_image_size()
      corners = [(0,0), (size1-1,0), (0,size2-1), (size1-1,size2-1)]
      corners_lab = [col(farthest_panel.get_pixel_lab_coord(c)) for c in corners]
      corner_two_thetas = [farthest_panel.get_two_theta_at_pixel(s0, c) for c in corners]
      extent_two_theta = max(corner_two_thetas)
      max_corner = corners_lab[corner_two_thetas.index(extent_two_theta)]
      extent = int(math.ceil(max_corner.length()*math.sin(extent_two_theta)/max(farthest_panel.get_pixel_size())))
      extent_two_theta *= 180/math.pi

      if params.n_bins < extent:
        params.n_bins = extent

      # These arrays will store the radial average info
      sums    = flex.double(params.n_bins) * 0
      sums_sq = flex.double(params.n_bins) * 0
      counts  = flex.int(params.n_bins) * 0

      if n_images is None:
        all_data = img.get_raw_data()
      else:
        all_data = img.get_raw_data(image_number)

      if not isinstance(all_data, tuple):
        all_data = (all_data,)

      for tile, (panel, data) in enumerate(zip(detector, all_data)):
        if params.mask is None:
          mask = flex.bool(flex.grid(data.focus()), True)
        else:
          mask = params.mask[tile]

        if hasattr(data,"as_double"):
          data = data.as_double()

        logger.flush()
        if params.verbose:
          logger.write("Average intensity tile %d: %9.3f\n"%(tile, flex.mean(data)))
          logger.write("N bins: %d\n"%params.n_bins)
          logger.flush()

        x1,y1,x2,y2 = 0,0,panel.get_image_size()[1],panel.get_image_size()[0]
        bc = panel.get_beam_centre_px(beam.get_s0())
        bc = int(round(bc[1])), int(round(bc[0]))

        # compute the average
        radial_average(data,mask,bc,sums,sums_sq,counts,panel.get_pixel_size()[0],panel.get_distance(),
                       (x1,y1),(x2,y2))

      # average the results, avoiding division by zero
      results = sums.set_selected(counts <= 0, 0)
      results /= counts.set_selected(counts <= 0, 1).as_double()

      if params.median_filter_size is not None:
        logger.write("WARNING, the median filter is not fully propogated to the variances\n")
        from scipy.ndimage.filters import median_filter
        results = flex.double(median_filter(results.as_numpy_array(), size = params.median_filter_size))

      # calculate standard devations
      stddev_sel = ((sums_sq-sums*results) >= 0) & (counts > 0)
      std_devs = flex.double(len(sums), 0)
      std_devs.set_selected(stddev_sel,
                           (sums_sq.select(stddev_sel)-sums.select(stddev_sel)* \
                            results.select(stddev_sel))/counts.select(stddev_sel).as_double())
      std_devs = flex.sqrt(std_devs)

      twotheta = flex.double(xrange(len(results)))*extent_two_theta/params.n_bins
      q_vals = 4*math.pi*flex.sin(math.pi*twotheta/360)/beam.get_wavelength()

      if params.low_max_two_theta_limit is None:
        subset = results
      else:
        subset = results.select(twotheta >= params.low_max_two_theta_limit)

      max_result = flex.max(subset)

      if params.x_axis == 'two_theta':
        xvals = twotheta
        max_x = twotheta[flex.first_index(results, max_result)]
      elif params.x_axis == 'q':
        xvals = q_vals
        max_x = q_vals[flex.first_index(results, max_result)]

      for i in xrange(len(results)):
        val = xvals[i]
        if params.output_bins and "%.3f"%results[i] != "nan":
         #logger.write("%9.3f %9.3f\n"%     (val,results[i]))        #.xy  format for Rex.cell.
          logger.write("%9.3f %9.3f %9.3f\n"%(val,results[i],std_devs[i])) #.xye format for GSASII
         #logger.write("%.3f %.3f %.3f\n"%(val,results[i],ds[i]))  # include calculated d spacings
      logger.write("Maximum %s: %f, value: %f\n"%(params.x_axis, max_x, max_result))

      if params.show_plots:
        if params.plot_x_max is not None:
          results = results.select(xvals <= params.plot_x_max)
          xvals = xvals.select(xvals <= params.plot_x_max)
        if params.normalize:
          plt.plot(xvals.as_numpy_array(),(results/flex.max(results)).as_numpy_array(),'-')
        else:
          plt.plot(xvals.as_numpy_array(),results.as_numpy_array(),'-')
        if params.x_axis == 'two_theta':
          plt.xlabel("2 theta")
        elif params.x_axis == 'q':
          plt.xlabel("q")
        plt.ylabel("Avg ADUs")
        if params.plot_y_max is not None:
          plt.ylim(0, params.plot_y_max)

    if params.show_plots:
      #plt.legend([os.path.basename(os.path.splitext(f)[0]) for f in params.file_path], ncol=2)
      plt.show()

  return xvals, results
Exemplo n.º 60
0
    def calculate_scaling(self,
                          miller_array,
                          convergence_crit_perc=0.01,
                          convergence_reject_perc=97.5,
                          max_iter=20):
        """Calculate the scaling between two arrays"""

        assert convergence_reject_perc > 90.0

        # Convert to intensities and extract d_star_sq
        new_miller = miller_array.as_intensity_array()
        new_kernel = self._kernel_normalisation(miller_array=new_miller)
        # Calculate new range of d_star_sq
        d_star_sq_min, d_star_sq_max = self._common_d_star_sq_range(
            d_star_sq=new_kernel.d_star_sq_array)

        # Create interpolator for the two arrays (new and reference)
        interpolator = scale_curves.curve_interpolator(d_star_sq_min,
                                                       d_star_sq_max,
                                                       self._npoints)

        # Interpolate the two curves (use full range of the two array)
        new_itpl_d_star_sq, new_itpl_mean_I, dummy, dummy = interpolator.interpolate(
            x_array=new_kernel.d_star_sq_array,
            y_array=new_kernel.mean_I_array)
        ref_itpl_d_star_sq, ref_itpl_mean_I, dummy, dummy = interpolator.interpolate(
            x_array=self.ref_kernel.d_star_sq_array,
            y_array=self.ref_kernel.mean_I_array)

        # Initalise convergence loop - begin by scaling over all points
        selection = flex.bool(self._npoints, True)
        # Set initial scale factor to small value
        curr_b = 1e-6
        # Percent change between iterations - convergence when delta <convergence_criterion
        n_iter = 0
        # Report in case of error
        report = Report('Scaling log:', verbose=False)
        while n_iter < max_iter:
            report('---')
            report('ITER: ' + str(n_iter))

            if selection.all_eq(False):
                print("Selection now empty, breaking")
                break

            # Run optimisation on the linear scaling
            lsc = ExponentialScaling(x_values=interpolator.target_x,
                                     ref_values=ref_itpl_mean_I,
                                     scl_values=new_itpl_mean_I,
                                     weights=selection.as_double())
            # Calculate scaling B-factor
            lsc.scaling_b_factor = -0.5 * list(lsc.optimised_values)[0]
            # Break if fitted to 0
            if approx_equal_relatively(0.0, lsc.scaling_b_factor, 1e-6):
                report('Scaling is approximately 0.0 - stopping')
                break
            # Calculate percentage change
            report('Curr/New: ' + str(curr_b) + '\t' +
                   str(lsc.scaling_b_factor))
            delta = abs((curr_b - lsc.scaling_b_factor) / curr_b)
            report('Delta: ' + str(delta))
            if delta < convergence_crit_perc:
                report('Scaling has converged to within tolerance - stopping')
                break
            # Update selection
            report('Curr Selection Size: ' + str(sum(selection)))
            ref_diffs = flex.log(lsc.ref_values) - flex.log(lsc.out_values)
            #abs_diffs = flex.abs(ref_diffs)
            sel_diffs = ref_diffs.select(selection)
            rej_val_high = numpy.percentile(sel_diffs, convergence_reject_perc)
            rej_val_low = numpy.percentile(sel_diffs,
                                           100.0 - convergence_reject_perc)
            report('Percentile: ' + str(convergence_reject_perc) + '\t<' +
                   str(rej_val_low) + '\t>' + str(rej_val_high))
            selection.set_selected(ref_diffs > rej_val_high, False)
            selection.set_selected(ref_diffs < rej_val_low, False)

            report('New Selection Size: ' + str(sum(selection)))
            # Update loop params
            curr_b = lsc.scaling_b_factor
            n_iter += 1

        lsc.unscaled_ln_rmsd = (flex.log(lsc.ref_values) - flex.log(
            lsc.scl_values)).norm() / (lsc.ref_values.size()**0.5)
        lsc.scaled_ln_rmsd = (flex.log(lsc.ref_values) - flex.log(
            lsc.out_values)).norm() / (lsc.ref_values.size()**0.5)

        lsc.unscaled_ln_dev = flex.sum(
            flex.abs(flex.log(lsc.ref_values) - flex.log(lsc.scl_values)))
        lsc.scaled_ln_dev = flex.sum(
            flex.abs(flex.log(lsc.ref_values) - flex.log(lsc.out_values)))

        return lsc