def run():
  random.seed(0)
  flex.set_random_seed(0)
  test_rosenbrock_function(3)
  random.seed(0)
  flex.set_random_seed(0)
  test_rosenbrock_function(4)
def run(args):
  from scitbx.array_family import flex
  import random
  random.seed(0)
  flex.set_random_seed(0)
  from cctbx.development import debug_utils
  debug_utils.parse_options_loop_space_groups(args, run_call_back)
Exemplo n.º 3
0
def exercise_twin_detwin () :
  random.seed(12345)
  flex.set_random_seed(12345)
  xrs = random_structure.xray_structure(
    unit_cell=(12,5,12,90,90,90),
    space_group_symbol="P1",
    n_scatterers=12,
    elements="random")
  fc = abs(xrs.structure_factors(d_min=1.5).f_calc())
  fc = fc.set_observation_type_xray_amplitude()
  mtz_file = "tmp_massage_in.mtz"
  fc.as_mtz_dataset(column_root_label="F").mtz_object().write(mtz_file)
  massage_data.run(
    args=[
      mtz_file,
      "aniso.action=None",
      "outlier.action=None",
      "symmetry.action=twin",
      "twin_law='l,-k,h'",
      "fraction=0.3",
      "hklout=tmp_massage_twinned.mtz",
    ],
    out=null_out())
  assert op.isfile("tmp_massage_twinned.mtz")
  mtz_in = file_reader.any_file("tmp_massage_twinned.mtz")
  fc_twin = mtz_in.file_server.miller_arrays[0].f_sq_as_f()
  fc_twin, fc_tmp = fc_twin.common_sets(other=fc)
  for hkl, f1, f2 in zip(fc_tmp.indices(), fc_tmp.data(), fc_twin.data()) :
    if (abs(hkl[0]) != abs(hkl[2])) :
      assert not approx_equal(f1, f2, eps=0.01, out=null_out()), (hkl, f1, f2)
  massage_data.run(
    args=[
      mtz_file,
      "aniso.action=None",
      "outlier.action=None",
      "symmetry.action=twin",
      "twin_law='l,-k,h'",
      "fraction=0.3",
      "hklout=tmp_massage_twinned.sca",
    ],
    out=null_out())
  assert op.isfile("tmp_massage_twinned.sca")
  massage_data.run(
    args=[
      "tmp_massage_twinned.mtz",
      "aniso.action=None",
      "outlier.action=None",
      "symmetry.action=detwin",
      "twin_law='l,-k,h'",
      "fraction=0.3",
      "hklout=tmp_massage_detwinned.mtz",
    ],
    out=null_out())
  mtz_in = file_reader.any_file("tmp_massage_detwinned.mtz")
  fc_detwin = mtz_in.file_server.miller_arrays[0].f_sq_as_f()
  fc_detwin, fc_tmp = fc_detwin.common_sets(other=fc)
  # XXX we appear to lose some accuracy here, possibly due to the use of
  # MTZ format
  for hkl, f1, f2 in zip(fc_tmp.indices(), fc_tmp.data(), fc_detwin.data()) :
    assert approx_equal(f1, f2, eps=0.01), hkl
Exemplo n.º 4
0
 def run(self, random_seed):
   tmp = self.xray_structure.deep_copy_scatterers()
   # Shake and minimize to get variable starting points
   tmp.shake_sites_in_place(
     rms_difference = None,
     mean_distance  = 5)
   sites_cart_ = tmp.sites_cart()
   minimized = geometry_minimization.lbfgs(
     sites_cart                        = sites_cart_,
     correct_special_position_tolerance= 1.0,
     geometry_restraints_manager       = self.restraints_manager.geometry,
     geometry_restraints_flags         = self.grf,
     lbfgs_exception_handling_params   = self.lbfgs_exception_handling_params,
     lbfgs_termination_params          = scitbx.lbfgs.termination_parameters(
       max_iterations=50))
   tmp = tmp.replace_sites_cart(new_sites = sites_cart_)
   #
   random.seed(random_seed)
   flex.set_random_seed(random_seed)
   sa.run(
     params             = self.params,
     xray_structure     = tmp,
     real_space         = True,
     target_map         = self.map_data,
     restraints_manager = self.restraints_manager,
     wx                 = self.weight,
     wc                 = 1.,
     verbose            = False)
   return tmp
Exemplo n.º 5
0
def run():
  flex.set_random_seed(0)
  for ii in xrange(10):
    test_rosenbrock_function(1)
    test_function(1)
    test_function(2)
    test_function(3)
    test_function(4)
 def __init__(self):
   #
   # FIXME!!!!!
   # Setting random seed to avoid test failure, need to take anothe look at
   # this to figure out why this is failing sometimes anyway.
   #
   from random import seed
   from scitbx.array_family import flex
   seed(0)
   flex.set_random_seed(0)
Exemplo n.º 7
0
  def plot_uc_3Dplot(self, info):
    assert self.interactive

    import numpy as np
    from mpl_toolkits.mplot3d import Axes3D # import dependency

    fig = self.plt.figure(figsize=(12, 10))
    # Extract uc dimensions from info list
    a = flex.double([i['a'] for i in info])
    b = flex.double([i['b'] for i in info])
    c = flex.double([i['c'] for i in info])
    alpha = flex.double([i['alpha'] for i in info])
    beta = flex.double([i['beta'] for i in info])
    gamma = flex.double([i['gamma'] for i in info])
    n_total = len(a)

    accepted = flex.bool(n_total, True)
    for d in [a, b, c, alpha, beta, gamma]:
      outliers = self.reject_outliers(d)
      accepted &= ~outliers

    a = a.select(accepted)
    b = b.select(accepted)
    c = c.select(accepted)

    AA = "a-edge (%.2f +/- %.2f $\AA$)" % (flex.mean(a),
                                        flex.mean_and_variance(a).unweighted_sample_standard_deviation())
    BB = "b-edge (%.2f +/- %.2f $\AA$)" % (flex.mean(b),
                                        flex.mean_and_variance(b).unweighted_sample_standard_deviation())
    CC = "c-edge (%.2f +/- %.2f $\AA$)" % (flex.mean(c),
                                        flex.mean_and_variance(c).unweighted_sample_standard_deviation())


    subset = min(len(a),1000)

    flex.set_random_seed(123)
    rnd_sel = flex.random_double(len(a))<(subset/n_total)

    a = a.select(rnd_sel)
    b = b.select(rnd_sel)
    c = c.select(rnd_sel)

    fig.suptitle('{} randomly selected cells out of total {} images'
                 ''.format(len(a),n_total), fontsize=18)

    ax = fig.add_subplot(111, projection='3d')

    for ia in xrange(len(a)):
      ax.scatter(a[ia],b[ia],c[ia],c='r',marker='+')

    ax.set_xlabel(AA)
    ax.set_ylabel(BB)
    ax.set_zlabel(CC)
Exemplo n.º 8
0
def run(
    args,
    map_data=None,
    map_coeffs=None,
    pdb_inp=None,
    pdb_string=None,
    crystal_symmetry=None,
    params_edits=None,
    out=sys.stdout,
):

    # Get the parameters
    params = get_params(args=args, out=out)

    if params.control.random_seed:
        import random

        random.seed(params.control.random_seed)
        flex.set_random_seed(params.control.random_seed)
        print >> out, "\nUsing random seed of %d" % (params.control.random_seed)

    # Get map_data if not present
    map_data, map_coeffs, crystal_symmetry = get_map_data_and_symmetry(
        crystal_symmetry=crystal_symmetry,
        map_data=map_data,
        map_coeffs=map_coeffs,
        map_coeffs_file=params.input_files.map_coeffs_file,
        map_coeffs_labels=params.input_files.map_coeffs_labels,
    )

    # Get the starting model
    pdb_inp, cryst1_line, pdb_string = get_pdb_inp(
        crystal_symmetry=crystal_symmetry, pdb_inp=pdb_inp, pdb_string=pdb_string, pdb_in=params.input_files.pdb_in
    )

    pdb_hierarchy, multiple_models_hierarchy = run_one_cycle(
        params=params,
        map_data=map_data,
        pdb_inp=pdb_inp,
        pdb_string=pdb_string,
        crystal_symmetry=crystal_symmetry,
        params_edits=params_edits,
        out=out,
    )

    if params.output_files.pdb_out:
        f = open(params.output_files.pdb_out, "w")
        print >> f, cryst1_line
        print >> f, pdb_hierarchy.as_pdb_string()
        print >> out, "\nWrote output model to %s" % (params.output_files.pdb_out)
        f.close()
    # all done
    return pdb_hierarchy, multiple_models_hierarchy
Exemplo n.º 9
0
def exercise_space_group_handling () :
  flex.set_random_seed(123456)
  random.seed(123456)
  base = "tst_cc_star_space_group"
  pdb_in = iotbx.pdb.hierarchy.input(pdb_string=model_1yjp)
  xrs = pdb_in.xray_structure_simple()
  xrs.set_inelastic_form_factors(
    photon=1.54,
    table="sasaki")
  fc = abs(xrs.structure_factors(d_min=1.5).f_calc()).average_bijvoet_mates()
  fc.set_observation_type_xray_amplitude()
  flags = fc.generate_r_free_flags()
  mtz = fc.as_mtz_dataset(column_root_label="F")
  mtz.add_miller_array(flags, column_root_label="FreeR_flag")
  mtz.mtz_object().write(base + ".mtz")
  xrs_p1 = xrs.expand_to_p1()
  xrs_p1.shake_sites_in_place(rms_difference=0.1)
  fc_p1 = xrs_p1.structure_factors(d_min=1.4).f_calc()
  fc_p1_extra = fc_p1.randomize_amplitude_and_phase(amplitude_error=1.0,
    phase_error_deg=0,
    random_seed=123456)
  fc_p1 = abs(fc_p1.concatenate(other=fc_p1_extra)).sort(
    by_value="packed_indices")
  fc_p1.set_observation_type_xray_amplitude()
  sg_p2 = sgtbx.space_group_info("P2")
  ic = fc_p1.f_as_f_sq().customized_copy(
    space_group_info=sg_p2,
    sigmas=flex.double(fc_p1.size(), 10.0))
  ic.export_as_scalepack_unmerged(file_name=base + ".sca")
  open(base + ".pdb", "w").write(model_1yjp)
  args = [
    base + ".mtz",
    base + ".pdb",
    "unmerged_data=%s.sca" % base,
  ]
  cc_star.run(args=args, out=null_out())
  # now with .sca in P1 (raises Sorry)
  ic2 = fc_p1.f_as_f_sq().customized_copy(
    sigmas=flex.double(fc_p1.size(), 10.0))
  ic2.export_as_scalepack_unmerged(file_name=base + "_p1.sca")
  args = [
    base + ".mtz",
    base + ".pdb",
    "unmerged_data=%s_p1.sca" % base,
  ]
  try :
    cc_star.run(args=args, out=null_out())
  except Sorry, s :
    assert (str(s) == "Incompatible space groups in merged and unmerged data:P 1 21 1 versus P 1"), s
Exemplo n.º 10
0
def exercise_1():
  random.seed(0)
  flex.set_random_seed(0)
  pi = get_pdb_inputs(pdb_str=pdb_str_1)
  f_obs = abs(pi.xrs.structure_factors(d_min = 2.5).f_calc())
  r_free_flags = f_obs.generate_r_free_flags(use_lattice_symmetry=False)
  if(0):
    pi.ph.adopt_xray_structure(pi.xrs)
    pi.ph.write_pdb_file(file_name="start.pdb",
      crystal_symmetry = pi.xrs.crystal_symmetry())
  xrs_poor = shake_sites(xrs = pi.xrs.deep_copy_scatterers(), random=False,
   shift = 1.5, grm=pi.grm)
  if(0):
    pi.ph.adopt_xray_structure(xrs_poor)
    pi.ph.write_pdb_file(file_name="poor.pdb",
      crystal_symmetry = xrs_poor.crystal_symmetry())

  fmodel = mmtbx.f_model.manager(
    f_obs          = f_obs,
    r_free_flags   = r_free_flags,
    xray_structure = xrs_poor)
  print "start r_work:", fmodel.r_work()
  #
  params = sa.master_params().extract()
  params.start_temperature=3000
  params.final_temperature=0
  params.cool_rate = 100
  params.number_of_steps = 100
  params.update_grads_shift = 0.
  #
  sa.run(
    params = params,
    fmodel = fmodel,
    restraints_manager = pi.grm,
    wx                 = 20,
    wc                 = 1,
    verbose            = True)
  #
  r = fmodel.r_work()
  print "final r_work:", r
  assert r < 0.03, r
  dist = flex.mean(flex.sqrt((pi.xrs.sites_cart() -
          fmodel.xray_structure.sites_cart()).dot()))
  print "Distance(refined, answer): %6.4f"%dist
  assert dist < 0.25, dist
  if(0):
    pi.ph.adopt_xray_structure(fmodel.xray_structure)
    pi.ph.write_pdb_file(file_name="refined.pdb",
      crystal_symmetry = fmodel.xray_structure.crystal_symmetry())
  def generate_reflections(self):
    sweep_range = self.scan.get_oscillation_range(deg=False)
    resolution = 2.0
    index_generator = IndexGenerator(self.crystal.get_unit_cell(),
                          space_group(space_group_symbols(1).hall()).type(),
                          resolution)
    indices = index_generator.to_array()

    # Predict rays within the sweep range
    ray_predictor = ScansRayPredictor(self.experiments, sweep_range)
    obs_refs = ray_predictor(indices)

    # Take only those rays that intersect the detector
    intersects = ray_intersection(self.detector, obs_refs)
    obs_refs = obs_refs.select(intersects)

    # Re-predict using the Experiments predictor for all these reflections. The
    # result is the same, but we gain also the flags and xyzcal.px columns
    obs_refs['id'] = flex.int(len(obs_refs), 0)
    obs_refs = self.ref_predictor(obs_refs)

    # Set 'observed' centroids from the predicted ones
    obs_refs['xyzobs.mm.value'] = obs_refs['xyzcal.mm']

    # Invent some variances for the centroid positions of the simulated data
    im_width = 0.1 * pi / 180.
    px_size = self.detector[0].get_pixel_size()
    var_x = flex.double(len(obs_refs), (px_size[0] / 2.)**2)
    var_y = flex.double(len(obs_refs), (px_size[1] / 2.)**2)
    var_phi = flex.double(len(obs_refs), (im_width / 2.)**2)
    obs_refs['xyzobs.mm.variance'] = flex.vec3_double(var_x, var_y, var_phi)

    # set the flex random seed to an 'uninteresting' number
    flex.set_random_seed(12407)

    # take 5 random reflections for speed
    reflections = obs_refs.select(flex.random_selection(len(obs_refs), 5))

    # use a BlockCalculator to calculate the blocks per image
    from dials.algorithms.refinement.reflection_manager import BlockCalculator
    block_calculator = BlockCalculator(self.experiments, reflections)
    reflections = block_calculator.per_image()

    return reflections
Exemplo n.º 12
0
def exercise(d_min=3.5):
    pi = get_pdb_inputs(pdb_str=pdb_str_1)
    selection = flex.bool(pi.xrs.scatterers().size(), True)
    f_obs = abs(pi.xrs.structure_factors(d_min=d_min).f_calc())
    r_free_flags = f_obs.generate_r_free_flags()
    for d_min in [1, 2, 3]:
        print "d_min:", d_min
        f_calc = pi.xrs.structure_factors(d_min=d_min).f_calc()
        fft_map = f_calc.fft_map(resolution_factor=0.25)
        fft_map.apply_sigma_scaling()
        target_map = fft_map.real_map_unpadded()
        from mmtbx.refinement import real_space

        rsr_simple_refiner = real_space.simple(
            target_map=target_map,
            selection=selection,
            real_space_gradients_delta=d_min / 4,
            max_iterations=150,
            geometry_restraints_manager=pi.grm.geometry,
        )
        for shake_size in [1]:
            print "  shake_size:", shake_size
            for p in [(0.01, 1.0), (0.03, 3.0)]:
                print "    target:", p
                w_opt = flex.double()
                for start_value in [0, 1000]:
                    xrs_poor = pi.xrs.deep_copy_scatterers()
                    random.seed(0)
                    flex.set_random_seed(0)
                    xrs_poor.shake_sites_in_place(mean_distance=shake_size)
                    #
                    refined = real_space.refinery(
                        refiner=rsr_simple_refiner,
                        xray_structure=xrs_poor,
                        start_trial_weight_value=start_value,
                        rms_bonds_limit=p[0],
                        rms_angles_limit=p[1],
                    )
                    w_opt.append(refined.weight_final)
                    dist = flex.mean(flex.sqrt((pi.xrs.sites_cart() - refined.sites_cart_result).dot()))
                    print "      start_value:", start_value, refined.weight_final, refined.rms_bonds_final, refined.rms_angles_final, dist
                    assert refined.rms_bonds_final <= p[0]
                    assert refined.rms_angles_final <= p[1]
                assert flex.max(flex.abs(w_opt - flex.mean(w_opt))) < 1.0
Exemplo n.º 13
0
def exercise_01 () :
  pdb_raw = """\
CRYST1   10.000   15.000   10.000  90.00  90.00  90.00 P 1
ATOM   6407  N   GLY A 388      -0.783   9.368 -16.436  1.00 51.96           N
ATOM   6408  CA  GLY A 388      -0.227   9.888 -15.197  1.00 54.04           C
ATOM   6409  C   GLY A 388      -0.637  11.320 -14.897  1.00 55.86           C
ATOM   6410  O   GLY A 388      -1.728  11.738 -15.347  1.00 56.70           O
ATOM   6411  OXT GLY A 388       0.129  12.024 -14.203  1.00 56.98           O
ATOM   6412  D   GLY A 388      -0.460   9.727 -17.309  1.00 51.44           D
ATOM   6413  HA2 GLY A 388      -0.561   9.258 -14.385  1.00 54.07           H
ATOM   6414  HA3 GLY A 388       0.843   9.835 -15.243  1.00 54.13           H
TER    6415      GLY A 388
HETATM 6416  D   D8U A 401       2.236   5.695 -12.992  1.00 15.23           D
HETATM 6417  O   DOD A1001      -4.151   4.107 -16.592  1.00 13.40           O
HETATM 6418  D1  DOD A1001      -4.760   3.026 -11.326  1.00 15.45           D
HETATM 6419  D2  DOD A1001      -4.625   2.741 -13.845  1.00 14.81           D
"""
  random.seed(12345)
  flex.set_random_seed(12345)
  pdb_in = iotbx.pdb.hierarchy.input(pdb_string=pdb_raw)
  xrs = pdb_in.input.xray_structure_simple()
  pdb_in.hierarchy.atoms().reset_i_seq()
  open("tst_validate_experimental.pdb", "w").write(
    pdb_in.hierarchy.as_pdb_string(crystal_symmetry=xrs))
  f_calc =abs( xrs.structure_factors(d_min=2.0).f_calc())
  f_calc.set_observation_type_xray_amplitude()
  flags = f_calc.generate_r_free_flags()
  mtz = f_calc.as_mtz_dataset(column_root_label="F")
  mtz.add_miller_array(flags, column_root_label="FreeR_flag")
  mtz.mtz_object().write("tst_validate_experimental.mtz")
  args = [
    "tst_validate_experimental.pdb",
    "tst_validate_experimental.mtz",
  ]
  args.append("flags.clashscore=%s" % libtbx.env.has_module("probe"))
  result = molprobity.run(args=args,
    ignore_missing_modules=True,
    out=null_out()).validation
  assert result.real_space is not None
  ds = result.data_stats
  assert (ds.n_free > 0)
def exercise():
  # Exercise "simple" target
  pi = get_pdb_inputs(pdb_str=pdb_str_1)
  selection = flex.bool(pi.xrs.scatterers().size(), True)
  for d_min in [1, 2, 3]:
    print "d_min:", d_min
    f_calc = pi.xrs.structure_factors(d_min = d_min).f_calc()
    fft_map = f_calc.fft_map(resolution_factor=0.25)
    fft_map.apply_sigma_scaling()
    target_map = fft_map.real_map_unpadded()
    rsr_simple_refiner = individual_sites.simple(
      target_map                  = target_map,
      selection                   = selection,
      real_space_gradients_delta  = d_min/4,
      max_iterations              = 150,
      geometry_restraints_manager = pi.grm.geometry)
    for shake_size in [1,]:
      print "  shake_size:", shake_size
      for p in [(0.01, 1.0), (0.03, 3.0), (0.1, 10.0)]:
        print "    target:", p
        w_opt = flex.double()
        for start_value in [0.001, 0.01, 0.1, 0, 1, 10, 100, 1000]:
          xrs_poor = pi.xrs.deep_copy_scatterers()
          random.seed(0)
          flex.set_random_seed(0)
          xrs_poor.shake_sites_in_place(mean_distance = shake_size)
          #
          refined = individual_sites.refinery(
            refiner                  = rsr_simple_refiner,
            xray_structure           = xrs_poor,
            start_trial_weight_value = start_value,
            rms_bonds_limit          = p[0],
            rms_angles_limit         = p[1])
          w_opt.append(refined.weight_final)
          dist = flex.mean(flex.sqrt((pi.xrs.sites_cart() -
            refined.sites_cart_result).dot()))
          print "      w_start,w_final,b,a,dist: %9.4f %9.4f %6.3f %6.3f %6.3f"%(
            start_value, refined.weight_final, refined.rms_bonds_final,
            refined.rms_angles_final, dist)
          assert refined.rms_bonds_final  <= p[0]
          assert refined.rms_angles_final <= p[1]
Exemplo n.º 15
0
def test_curve_scaler():
   flex.set_random_seed( 12345 )
   x = flex.double( range(10) )/10.0
   y = flex.exp( -x )
   y0 = y
   y1 = y*100+50
   y2 = y*1000+500
   v0 = y0*0+1
   v1 = y0*0+1.0
   v2 = v1

   scaler_object = linear_scaler( [y0,y1,y2], [v0,v1,v2], 0 , factor=5,show_progress=False)
   s,o,m = scaler_object.retrieve_results()
   assert approx_equal(s[1],0.01,eps=1e-3)
   assert approx_equal(s[2],0.001,eps=1e-3)
   assert approx_equal(o[1],-50,eps=1e-2)
   assert approx_equal(o[2],-500,eps=1e-2)

   s,o = scale_it_pairwise([y0,y1,y2],[v0,v1,v2],0, show_progress=False)
   assert approx_equal(s[1],0.01,eps=1e-3)
   assert approx_equal(s[2],0.001,eps=1e-3)
   assert approx_equal(o[1],-50,eps=1e-2)
   assert approx_equal(o[2],-500,eps=1e-2)
def exercise () :
  flex.set_random_seed(12345)
  random.seed(12345)
  xrs = random_structure.xray_structure(
    sgtbx.space_group_info("P21212"),
    elements=["const"]*100)
  f_calc = xrs.structure_factors(d_min=2.5).f_calc()
  i_calc = abs(f_calc).f_as_f_sq().set_observation_type_xray_intensity()
  i_calc = i_calc.customized_copy(
    space_group_info=sgtbx.space_group_info("P222"),
    sigmas=flex.double(i_calc.size(), 1.0))
  complete_set = i_calc.complete_set()
  lone_set = complete_set.lone_set(other=i_calc)
  i_abs = lone_set.array(data=flex.double(lone_set.size(), 5),
    sigmas=flex.double(lone_set.size(), 10))
  i_calc = i_calc.concatenate(other=i_abs).set_observation_type_xray_intensity()
  i_calc.export_as_scalepack_unmerged(file_name="tst_sys_absent.sca")
  args = ["tst_sys_absent.sca"]
  out = StringIO()
  try :
    show_systematic_absences.run(args=args, out=out)
  except Sorry :
    pass
  else :
    raise Exception_expected
  args.append(",".join([ str(x) for x in xrs.unit_cell().parameters() ]))
  show_systematic_absences.run(args=args, out=out)
  assert (out.getvalue().count("  (   0,    3,    0): i/sigi =    0.5") == 4)
  i_calc = i_calc.customized_copy(sigmas=None)
  i_calc.as_mtz_dataset(column_root_label="I").mtz_object().write("tst_sys_absent.mtz")
  args = ["tst_sys_absent.mtz"]
  try :
    show_systematic_absences.run(args=args, out=out)
  except Sorry :
    pass
  else :
    raise Exception_expected
Exemplo n.º 17
0
 def __call__ (self, i_proc) :
   import mmtbx.building
   from scitbx.array_family import flex
   seed = self.params.random_seed
   if (seed is None) :
     seed = int(time.time() / os.getpid())
   random.seed(seed)
   flex.set_random_seed(seed)
   sites_new = mmtbx.building.run_real_space_annealing(
     xray_structure=self.xray_structure.deep_copy_scatterers(),
     pdb_hierarchy=self.pdb_hierarchy.deep_copy(),
     processed_pdb_file=self.processed_pdb_file,
     selection=self.selection,
     target_map=self.target_map,
     d_min=self.d_min,
     resolution_factor=self.resolution_factor,
     params=self.params.simulated_annealing,
     target_map_rsr=self.two_fofc_map,
     rsr_after_anneal=self.params.rsr_after_anneal,
     reference_sigma=self.params.reference_sigma,
     wc=self.params.wc,
     out=self.out,
     debug=self.debug)
   return sites_new
Exemplo n.º 18
0
def find_tls (params,
              pdb_inp,
              pdb_hierarchy,
              xray_structure,
              return_as_list=False,
              ignore_pdb_header_groups=False,
              out=None) :
  if (out is None) :
    out = sys.stdout
  print_statistics.make_header("Analyzing inputs", out=out)
  if (params.random_seed is None) :
    params.random_seed = flex.get_random_seed()
  random.seed(params.random_seed)
  flex.set_random_seed(params.random_seed)
  xray_structure.convert_to_isotropic()
  sites_cart = xray_structure.sites_cart()
  u_cart = None
  u_iso  = xray_structure.extract_u_iso_or_u_equiv()#*adptbx.u_as_b(1.) # ?
  bad_i_seqs = check_adp(u_iso=u_iso, out=out)
  if (bad_i_seqs is not None) :
    atoms = pdb_hierarchy.atoms()
    bad_atom_strings = []
    for i_seq in bad_i_seqs[:10] :
      atom_str = atoms[i_seq].format_atom_record()
      bad_atom_strings.append(atom_str)
    if (len(bad_i_seqs) > 10) :
      bad_atom_strings.append("... (remaining %d not shown)" %
        (len(bad_i_seqs)-10))
    raise Sorry(("%d atoms in the model contain isotropic B-factors <= 0:\n"+
      "\n".join(bad_atom_strings)) % (len(bad_i_seqs)))
  #
  ssm = mmtbx.secondary_structure.manager(
    pdb_hierarchy                = pdb_hierarchy,
    sec_str_from_pdb_file        = None,
    params                       = None)
  alpha_h_selection = ssm.alpha_selection()
  secondary_structure_selection = ssm.alpha_selection() | \
      ssm.beta_selection() | ssm.base_pair_selection()
  if(u_cart is not None):
    assert secondary_structure_selection.size() == u_cart.size()
  else:
    assert secondary_structure_selection.size() == u_iso.size()
  ssm.show_summary(log=out)
  chains_and_residue_selections, secondary_structure_selection = chains_and_atoms(
    pdb_hierarchy                 = pdb_hierarchy,
    secondary_structure_selection = secondary_structure_selection,
    out                           = out)
  chains_and_permutations = []
  chains_and_atom_selection_strings = []
  print_statistics.make_header("Processing chains", out=out)
  if (params.nproc is None) :
    params.nproc = 1
  for crs in chains_and_residue_selections:
    print_statistics.make_sub_header("Processing chain '%s'"%crs[0],
      out=out)
    chain_selection = chain_selection_from_residues(crs[1])
    groups, perms = get_model_partitioning(residues = crs[1],
      secondary_structure_selection = secondary_structure_selection,
      out = out)
    #
    #print
    #selection_arrays = sels_as_selection_arrays(sels = groups)
    #merge_groups_by_connectivity(
    #  pdb_hierarchy     = pdb_hierarchy,
    #  xray_structure    = xray_structure,
    #  selection_arrays  = selection_arrays)
    #assert 0
    #
    if(len(perms)==1):
      print >> out, "  Whole chain is considered as one TLS group."
      chains_and_atom_selection_strings.append([crs[0],
        permutations_as_atom_selection_string(groups, perms[0])])
    else:
      print >> out, "  Fitting TLS matrices..."
      dic = {}
      target_best = 1.e+9
      if (params.nproc is Auto) or (params.nproc > 1) :
        process_perms = analyze_permutations(
          groups=groups,
          sites_cart=sites_cart,
          u_cart=u_cart,
          u_iso=u_iso)
        from libtbx import easy_mp
        stdout_and_targets = easy_mp.pool_map(
          processes=params.nproc,
          fixed_func=process_perms,
          args=perms,
          chunksize=100,
          func_wrapper="buffer_stdout_stderr")
        targets = [ t for so, t in stdout_and_targets ]
        for (perm, target) in zip(perms, targets) :
          dic.setdefault(len(perm), []).append([target,perm])
      else :
        for i_perm, perm in enumerate(perms):
          if i_perm%500==0:
            print >> out, "    ...perm %d of %d"%(i_perm, len(perms))
          selections = tls_group_selections(groups, perm)
          target = 0
          for selection in selections:
            mo = tls_refinery(
              u_cart     = u_cart,
              u_iso      = u_iso,
              sites_cart = sites_cart,
              selection  = selection)
            target += mo.f
          dic.setdefault(len(perm), []).append([target,perm])
        #print "    perm %d of %d: target=%8.3f (TLS groups: %s), permutation:"%(
        #  i_perm, len(perms),target,len(perm)),perm
      print >> out, "    Best fits:"
      print >> out, "      No. of         Targets"
      print >> out, "      groups   best   rand.pick  diff.  score permutation"
      score_best = -1.e+9
      perm_choice = None
      for k, v in zip(dic.keys(),dic.values()):
        t_best = v[0][0]
        perm_best = v[0][1]
        for v_ in v:
          if(v_[0]<t_best):
            t_best = v_[0]
            perm_best = v_[1]
        if(u_cart is not None):
          u_cart_ = u_cart.select(chain_selection)
        else: u_cart_ = None
        if(u_iso is not None):
          u_iso_ = u_iso.select(chain_selection)
        else: u_iso_ = None
        r = tls_refinery_random_groups(
          u_cart     = u_cart_,
          u_iso      = u_iso_,
          sites_cart = sites_cart.select(chain_selection),
          n_groups   = k)
        score = (r-t_best)/(r+t_best)*100.
        print >> out, "         %3d %6.3f      %6.3f %6.2f %6.3f"%(
          k,t_best, r, r-t_best, score), perm_best
        if(score > score_best):
          score_best = score
          perm_choice = perm_best[:]
      #
      chains_and_permutations.append([crs[0],perm_choice])
      chains_and_atom_selection_strings.append([crs[0],
        permutations_as_atom_selection_string(groups, perm_choice)])
      #
  if (pdb_inp is not None) and (not ignore_pdb_header_groups) :
    external_tls_selections = external_tls(
      pdb_inp       = pdb_inp,
      pdb_hierarchy = pdb_hierarchy,
      sites_cart    = sites_cart,
      u_iso         = u_iso,
      out           = out)
  print_statistics.make_header("SUMMARY", out=out)
  #print "Optimal TLS groups:"
  #for chain_and_permutation in chains_and_permutations:
  #  print chain_and_permutation
  #print
  print >> out, "TLS atom selections for phenix.refine:"
  groups_out = cStringIO.StringIO()
  selection_strings = []
  print >> groups_out, "refinement.refine.adp {"
  for r in chains_and_atom_selection_strings:
    prefix = "chain '%s'"%r[0]
    if(len(r[1])>0 and len(r[1:])>0):
      prefix += " and "
      for r_ in r[1:]:
        for r__ in r_:
          if(len(r__)>0):
            group_selection = prefix+"(%s)"%r__
            print >> groups_out, "  tls = \"%s\"" % group_selection
            selection_strings.append("%s" % group_selection)
    else:
      print >> groups_out, "  tls = \"%s\"" % prefix
      selection_strings.append("%s" % prefix)
  print >> groups_out, "}"
  print >> out, groups_out.getvalue()
  print >> out
  #XXX
  if 0:
    merge_groups_by_connectivity(
      pdb_hierarchy     = pdb_hierarchy,
      xray_structure    = xray_structure,
      selection_strings = selection_strings)
  #XXX
  if(len(selection_strings)>0):
    total_target = total_score(
      pdb_hierarchy     = pdb_hierarchy,
      sites_cart        = sites_cart,
      u_iso             = u_iso,
      selection_strings = selection_strings)
    print >> out, "Overall best total target for automatically found groups: %10.1f"%total_target
    print >> out
  if (return_as_list) :
    return selection_strings
  else :
    return groups_out.getvalue()
Exemplo n.º 19
0
def run(args, log = sys.stdout):
  print >> log, legend
  # XXX: pre-processing for GUI; duplicates some of mmtbx.utils
  sources = []
  for arg in args :
    if os.path.isfile(arg) :
      try :
        file_phil = iotbx.phil.parse(file_name=arg)
      except KeyboardInterrupt :
        raise
      except RuntimeError :
        pass
      else :
        if len(file_phil.objects) != 0 :
          sources.append(file_phil)
  if len(sources) > 0 :
    cmdline_phil = fmodel_from_xray_structure_master_params.fetch(
      sources=sources)
    params = cmdline_phil.extract()
    if len(params.pdb_file) > 0 :
      args.extend(params.pdb_file)
    if params.reference_file is not None :
      args.append(params.reference_file)
  # end of preprocessing
  processed_args = mmtbx.utils.process_command_line_args(args = args, log = log,
    master_params = fmodel_from_xray_structure_master_params)
  pdb_combined = iotbx.pdb.combine_unique_pdb_files(
    file_names = processed_args.pdb_file_names)
  pdb_combined.report_non_unique(out = log)
  print >> log, "-"*79
  print >> log, "\nParameters to compute Fmodel::\n"
  processed_args.params.show(out = log, prefix=" ")
  params = processed_args.params.extract()
  if(params.random_seed is not None):
    random.seed(params.random_seed)
    flex.set_random_seed(params.random_seed)
  pdb_file_names = processed_args.pdb_file_names
  if len(pdb_file_names) == 0 :
    pdb_file_names = params.pdb_file # for GUI
  pdb_combined = iotbx.pdb.combine_unique_pdb_files(file_names=pdb_file_names)
  pdb_combined.report_non_unique(out = log)
  if(len(pdb_combined.unique_file_names) == 0):
    raise Sorry("Model file is not provided.")
  print >> log, "-"*79
  print >> log, "\nInput model file(s):", " ".join(processed_args.pdb_file_names)
  pdb_inp = iotbx.pdb.input(source_info = None,
    lines = flex.std_string(pdb_combined.raw_records))
  # select miller array to use as a set of miller indices for f_model
  miller_array = None
  if(len(processed_args.reflection_files) > 1):
    raise Sorry("Multiple reflection files found at input.")
  # FIXME this does not pick up the reference_file parameter!  in fact, it
  # appears to be ignored completely when run on the command line.
  if(len(processed_args.reflection_files) == 1):
    print >> log, "-"*79
    print >> log, "Input reflection data:", \
      " ".join(processed_args.reflection_file_names)
    if([params.high_resolution, params.low_resolution].count(None) != 2):
      raise Sorry("high_resolution and low_resolution must be undefined "+
                  "if reflection data file is given.")
    miller_arrays = processed_args.reflection_files[0].as_miller_arrays()
    data_sizes = flex.int([ma.data().size() for ma in miller_arrays])
    if(data_sizes.all_eq(data_sizes[0])): miller_array = miller_arrays[0]
    else:
      all_labels = []
      for ma in miller_arrays:
        if(params.data_column_label is not None and
           ma.info().label_string() == params.data_column_label):
          miller_array = ma
          break
        all_labels.append(",".join(ma.info().labels))
    if(miller_array is None):
      raise Sorry("Multiple data available in input reflection file:\n%s\n%s"%(
        "\n".join(all_labels),"Please select one using 'data_column_label=' keyword."))
    else:
      miller_array.show_comprehensive_summary(f = log, prefix="  ")
  if(miller_array is not None):
    miller_array = miller_array.map_to_asu().customized_copy(
      data = flex.double(miller_array.data().size(), 1))
  #
  cryst1 = pdb_inp.crystal_symmetry_from_cryst1()
  if(cryst1 is None and miller_array is not None):
    cryst1 = miller_array.crystal_symmetry()
    if (cryst1 is not None) and (params.generate_fake_p1_symmetry) :
      raise Sorry("The input reference data already define crystal symmetry; "+
        "you may not use this in combination with the option "+
        "generate_fake_p1_symmetry=True.")
  if (not params.generate_fake_p1_symmetry) :
    if(cryst1 is None) :
      raise Sorry(
        "CRYST1 record in input PDB file is incomplete or missing.  "+
        "If you want the program to generate P1 symmetry automatically, set "+
        "generate_fake_p1_symmetry=True.")
    else:
      if([cryst1.unit_cell(), cryst1.space_group_info()].count(None) != 0):
        raise Sorry(
          "CRYST1 record in input PDB file is incomplete or missing. "+
          "If you want the program to generate P1 symmetry automatically, "+
          "set generate_fake_p1_symmetry=True.")
  pdb_hierarchy = pdb_inp.construct_hierarchy()
  # need to preserve the order in the hierarchy in case we have to perform an
  # atom selection later
  xray_structure = pdb_hierarchy.extract_xray_structure(
    crystal_symmetry = cryst1)
  if (cryst1 is None) :
    cryst1 = xray_structure.crystal_symmetry()
  if (miller_array is not None) :
    if (miller_array.crystal_symmetry() is None) :
      miller_array = miller_array.customized_copy(crystal_symmetry=cryst1)
  xray_structure.show_summary(f = log, prefix="  ")
  if(len(params.anomalous_scatterers.group) != 0):
    pdb_atoms = pdb_hierarchy.atoms()
    pdb_atoms.reset_i_seq()
    set_fp_fdp_for_anomalous_scatterers(
      pdb_hierarchy              = pdb_hierarchy,
      xray_structure             = xray_structure,
      anomalous_scatterer_groups = params.anomalous_scatterers.group)
  elif (params.wavelength is not None) :
    if (params.scattering_table == "neutron") :
      raise Sorry("Wavelength parameter not supported when the neutron "+
        "scattering table is used.")
    print >> log, "Setting inelastic form factors for wavelength = %g" % \
      params.wavelength
    xray_structure.set_inelastic_form_factors(
      photon=params.wavelength,
      table="sasaki")
  #
  validate_params_command_line(params)
  #
  print >> log, "-"*79
  print >> log, "Computing model structure factors, Fmodel:"
  if(params.output.format == "cns"): extension = ".hkl"
  elif(params.output.format == "mtz"): extension = ".mtz"
  ofn = params.output.file_name
  if(ofn is None):
    ofn = os.path.basename(processed_args.pdb_file_names[0])
    if(len(processed_args.pdb_file_names)==1): ofn = ofn + extension
    else: ofn = ofn + "_et_al" + extension
  if([miller_array, params.high_resolution].count(None)==2):
    raise Sorry("Input data file or high_resolution has to be provided.")
  mmtbx.utils.fmodel_from_xray_structure(
    xray_structure = xray_structure,
    f_obs          = miller_array,
    add_sigmas     = params.add_sigmas,
    params         = params,
    twin_law       = params.twin_law,
    twin_fraction  = params.twin_fraction,
    out            = log).write_to_file(file_name = ofn,
      obs_type=params.output.obs_type)
  print >> log, "Output file name:", ofn
  print >> log, "All done."
  print >> log, "-"*79
  return ofn
Exemplo n.º 20
0
def exercise () :
  flex.set_random_seed(123456)
  random.seed(123456)
  base = "tst_table_one"
  pdb_in = iotbx.pdb.hierarchy.input(pdb_string=model_1yjp)
  xrs = pdb_in.xray_structure_simple()
  xrs.set_inelastic_form_factors(
    photon=1.54,
    table="sasaki")
  fc = abs(xrs.structure_factors(d_min=1.5).f_calc()).average_bijvoet_mates()
  fc.set_observation_type_xray_amplitude()
  flags = fc.generate_r_free_flags()
  mtz = fc.as_mtz_dataset(column_root_label="F",
    wavelength=1.54)
  mtz.add_miller_array(flags, column_root_label="FreeR_flag")
  mtz.mtz_object().write(base + ".mtz")
  xrs_p1 = xrs.expand_to_p1()
  xrs_p1.shake_sites_in_place(rms_difference=0.1)
  fc_p1 = xrs_p1.structure_factors(d_min=1.4).f_calc()
  fc_p1_extra = fc_p1.randomize_amplitude_and_phase(amplitude_error=1.0,
    phase_error_deg=0,
    random_seed=123456)
  fc_p1 = abs(fc_p1.concatenate(other=fc_p1_extra)).sort(
    by_value="packed_indices")
  fc_p1.set_observation_type_xray_amplitude()
  sg_p2 = sgtbx.space_group_info("P2")
  ic = fc_p1.f_as_f_sq().customized_copy(
    space_group_info=sg_p2,
    sigmas=flex.double(fc_p1.size(), 10.0))
  ic.export_as_scalepack_unmerged(file_name=base + ".sca")
  open(base + ".pdb", "w").write(model_1yjp)
  args = [
    base + ".mtz",
    base + ".pdb",
    "unmerged_data=%s.sca" % base,
    "prefix=tst_table_one_1",
  ]
  table_one.run(args=args, out=null_out(),
    use_current_directory_if_not_specified=True)
  # now with unmerged data in SHELX format
  f = open(base + ".hkl", "w")
  ic.export_as_shelx_hklf(file_object=f)
  f.close()
  args = [
    base + ".mtz",
    base + ".pdb",
    "unmerged_data=%s.hkl=hklf4" % base,
    "prefix=tst_table_one_2",
  ]
  table_one.run(args=args, out=null_out(),
    use_current_directory_if_not_specified=True)
  # now with phil file
  f = open("tst_table_one_3.eff", "w")
  f.write("""\
table_one {
  structure {
    name = %(base)s
    pdb_file = %(base)s.pdb
    mtz_file = %(base)s.mtz
    unmerged_data = %(base)s.hkl=hklf4
  }
  output {
    directory = os.getcwd()
    base_name = %(base)s_3
  }
}""" % {"base" : base })
  args = [ "tst_table_one_3.eff" ]
  table_one.run(args=args, out=null_out(),
    use_current_directory_if_not_specified=True)
obs_refs['id'] = flex.int(len(obs_refs), 0)
obs_refs = ref_predictor.predict(obs_refs)

# Set 'observed' centroids from the predicted ones
obs_refs['xyzobs.mm.value'] = obs_refs['xyzcal.mm']

# Invent some variances for the centroid positions of the simulated data
im_width = 0.1 * pi / 180.
px_size = mydetector[0].get_pixel_size()
var_x = flex.double(len(obs_refs), (px_size[0] / 2.)**2)
var_y = flex.double(len(obs_refs), (px_size[1] / 2.)**2)
var_phi = flex.double(len(obs_refs), (im_width / 2.)**2)
obs_refs['xyzobs.mm.variance'] = flex.vec3_double(var_x, var_y, var_phi)

# set the flex random seed to an 'uninteresting' number
flex.set_random_seed(12407)

# take 5 random reflections for speed
reflections = obs_refs.select(flex.random_selection(len(obs_refs), 5))

# use a BlockCalculator to calculate the blocks per image
from dials.algorithms.refinement.reflection_manager import BlockCalculator
block_calculator = BlockCalculator(experiments, reflections)
reflections = block_calculator.per_image()

# use a ReflectionManager to exclude reflections too close to the spindle,
# plus set the frame numbers
from dials.algorithms.refinement.reflection_manager import ReflectionManager
refman = ReflectionManager(reflections, experiments,
  outlier_detector=None)
def exercise_load_unmerged():
  flex.set_random_seed(123456)
  random.seed(123456)
  base = "tst_load_unmerged"
  pdb_in = iotbx.pdb.hierarchy.input(pdb_string=model_1yjp)
  xrs = pdb_in.xray_structure_simple()
  xrs.set_inelastic_form_factors(
    photon=1.54,
    table="sasaki")
  fc = abs(xrs.structure_factors(d_min=1.5).f_calc()).average_bijvoet_mates()
  fc.set_observation_type_xray_amplitude()
  flags = fc.generate_r_free_flags()
  mtz = fc.as_mtz_dataset(column_root_label="F")
  mtz.add_miller_array(flags, column_root_label="FreeR_flag")
  mtz.mtz_object().write(base + ".mtz")
  xrs_p1 = xrs.expand_to_p1()
  xrs_p1.shake_sites_in_place(rms_difference=0.1)
  fc_p1 = xrs_p1.structure_factors(d_min=1.4).f_calc()
  fc_p1_extra = fc_p1.randomize_amplitude_and_phase(amplitude_error=1.0,
    phase_error_deg=0,
    random_seed=123456)
  fc_p1 = abs(fc_p1.concatenate(other=fc_p1_extra)).sort(
    by_value="packed_indices")
  fc_p1.set_observation_type_xray_amplitude()
  sg_p2 = sgtbx.space_group_info("P2")
  ic = fc_p1.f_as_f_sq().customized_copy(
    space_group_info=sg_p2,
    sigmas=flex.double(fc_p1.size(), 10.0))
  ic.export_as_scalepack_unmerged(file_name=base + ".sca")
  with open(base + ".pdb", "w") as f:
    f.write(model_1yjp)
  args = [
    base + ".mtz",
    base + ".pdb",
    "unmerged_data=%s.sca" % base,
  ]
  master_phil = mmtbx.command_line.generate_master_phil_with_inputs(
    phil_string="",
    enable_unmerged_data=True)
  cmdline = mmtbx.command_line.load_model_and_data(
    args=[ base + ext for ext in [".pdb",".mtz",] ] +
      ["unmerged_data.file_name=%s.sca" % base ],
    master_phil=master_phil,
    out=StringIO(),
    create_fmodel=False,
    process_pdb_file=False,
    create_log_buffer=True)
  # now with .sca in P1 (raises Sorry)
  ic2 = fc_p1.f_as_f_sq().customized_copy(
    sigmas=flex.double(fc_p1.size(), 10.0))
  ic2.export_as_scalepack_unmerged(file_name=base + "_p1.sca")
  args = [
    base + ".mtz",
    base + ".pdb",
    "unmerged_data=%s_p1.sca" % base,
  ]
  try :
    cmdline = mmtbx.command_line.load_model_and_data(
      args=[ base + ext for ext in [".pdb",".mtz",] ] +
      ["unmerged_data.file_name=%s_p1.sca" % base ],
      master_phil=master_phil,
      out=StringIO(),
      create_fmodel=False,
      process_pdb_file=False,
      create_log_buffer=True)
  except Sorry as s :
    assert (str(s) == "Incompatible space groups in merged and unmerged data:P 1 21 1 versus P 1"), s
  else :
    raise Exception_expected
  # XXX
  f = open(base + ".cif", "w")
  ic.as_cif_simple(array_type="meas",
    out=f)
  f.close()
  args = [
    base + ".mtz",
    base + ".pdb",
    "unmerged_data=%s.cif" % base,
  ]
  cmdline = mmtbx.command_line.load_model_and_data(
    args=[ base + ext for ext in [".pdb",".mtz",] ] +
      ["unmerged_data.file_name=%s.cif" % base ],
    master_phil=master_phil,
    out=StringIO(),
    create_fmodel=False,
    process_pdb_file=False,
    create_log_buffer=True)
  # bad unit cell
  uc2 = uctbx.unit_cell((23,6.5,23.5,90,108,90))
  ic3 = ic.customized_copy(unit_cell=uc2)
  f = open(base + "_new_uc.cif", "w")
  ic3.as_cif_simple(array_type="meas",
    out=f)
  f.close()
  args = [
    base + ".mtz",
    base + ".pdb",
    "unmerged_data=%s_new_uc.cif" % base,
  ]
  try :
    cmdline = mmtbx.command_line.load_model_and_data(
      args=[ base + ext for ext in [".pdb",".mtz",] ] +
        ["unmerged_data.file_name=%s_new_uc.cif" % base ],
      master_phil=master_phil,
      out=StringIO(),
      create_fmodel=False,
      process_pdb_file=False,
      create_log_buffer=True)
  except Sorry as s :
    assert ("Incompatible symmetry definitions" in str(s)), s
  else :
    raise Exception_expected
Exemplo n.º 23
0
import random
import time
import sys
import mmtbx.f_model
from scitbx.array_family import flex
from libtbx import group_args
import mmtbx.utils
import restraints
import macro_cycle
import mmtbx.command_line
# ase / mopac specific imports
from ase.calculators.mopac import Mopac

if 1:
  random.seed(1)
  flex.set_random_seed(1)

def get_master_phil():
  return mmtbx.command_line.generate_master_phil_with_inputs(
    phil_string="""
sf_algorithm = *direct fft
  .type = choice(multi=False)
restraints = cctbx *qm
  .type = choice(multi=False)
number_of_macro_cycles=50
  .type = int
data_weight=None
  .type = float
file_out_prefix=None
  .type = str
use_convergence_test = True
Exemplo n.º 24
0
def manage_random_seed(random_seed):
  if(random_seed is None):
    random_seed = flex.get_random_seed()
  random.seed(random_seed)
  flex.set_random_seed(random_seed)
    finite_grad_differences_test = True,
    use_geometry_restraints = True,
    shake_site_mean_distance = 1.5,
    d_min = 2)
  t.run_test()
  t.clean_up_temp_test_files()

def exercise_transformation_refinement():
  """  Test transformation refinement  """
  print 'Running ',sys._getframe().f_code.co_name
  t = ncs_minimization_test(
    n_macro_cycle   = 40,
    sites           = False,
    u_iso           = False,
    transformations = True,
    finite_grad_differences_test = True,
    use_geometry_restraints = True,
    shake_angles_sigma = 0.032,
    shake_translation_sigma = 0.5,
    d_min = 2)
  t.run_test()
  t.clean_up_temp_test_files()

if __name__ == "__main__":
  flex.set_random_seed(12345)
  random.seed(12345)
  exercise_without_geometry_restaints()
  exercise_site_refinement()
  exercise_u_iso_refinement()
  exercise_transformation_refinement()
def run():
  random.seed(0)
  flex.set_random_seed(0)
  test_rosenbrock_function(1)
  print "OK"
Exemplo n.º 27
0
def exercise () :
  random.seed(12345)
  flex.set_random_seed(12345)
  flags_1 = assign_random_r_free_flags(n_refl=100000, fraction_free=0.05)
  assert (flags_1.count(True) == 5000)
  flags_1_ccp4 = assign_random_r_free_flags(n_refl=100000, fraction_free=0.05,
    format="ccp4")
  # XXX this is the best we can do with the current method
  assert (flags_1_ccp4.count(0) > 4000) and (flags_1_ccp4.count(0) < 6000)
  flags_1_shelx = assign_random_r_free_flags(n_refl=100000, fraction_free=0.05,
    format="shelx")
  assert (flags_1_shelx.count(-1) == 5000)
  flags_2 = assign_r_free_flags_by_shells(n_refl=100000,
    fraction_free=0.05,
    n_bins=50)
  assert (flags_2.count(True) == 5000)
  ccp4_flags = export_r_free_flags_for_ccp4(flags_1, True)
  assert (ccp4_flags.count(0) == flags_1.count(True))
  assert (flex.max(ccp4_flags) == 19)
  shelx_flags = export_r_free_flags_for_shelx(flags_1, True)
  assert ((shelx_flags==-1).all_eq((ccp4_flags==0)))
  flags_3 = assign_random_r_free_flags(n_refl=100000, fraction_free=0.025)
  assert (flags_3.count(True) == 2500)
  ccp4_flags = export_r_free_flags_for_ccp4(flags_3, True)
  assert (ccp4_flags.count(0) == flags_3.count(True))
  assert (flex.max(ccp4_flags) == 39)
  # now with an actual Miller array
  symm = crystal.symmetry(
    space_group_info=sgtbx.space_group_info("P212121"),
    unit_cell=uctbx.unit_cell((6,7,8,90,90,90)))
  set1 = miller.build_set(
    crystal_symmetry=symm,
    anomalous_flag=True,
    d_min=1.0)
  flags_4 = set1.generate_r_free_flags()
  stats = get_r_free_stats(flags_4, True)
  assert (19 <= stats[0] <= 25) # XXX is this even necessary?
  # much larger for the last few tests
  symm = crystal.symmetry(
    space_group_info=sgtbx.space_group_info("P212121"),
    unit_cell=uctbx.unit_cell((60,70,80,90,90,90)))
  set1 = miller.build_set(
    crystal_symmetry=symm,
    anomalous_flag=True,
    d_min=1.0)
  #print set1.indices().size()
  flags_5 = set1.generate_r_free_flags(fraction=0.1, max_free=None)
  flags_6 = adjust_fraction(flags_5, 0.15, log=null_out())
  frac_6 = flags_6.data().count(True) / flags_6.data().size()
  assert approx_equal(frac_6, 0.15, eps=0.001)
  flags_7 = adjust_fraction(flags_5, 0.05, log=null_out())
  frac_7 = flags_7.data().count(True) / flags_7.data().size()
  assert approx_equal(frac_7, 0.05, eps=0.001)
  n_flipped = 0
  for i_hkl, (h,k,l) in enumerate(flags_5.indices()) :
    if (i_hkl % 100 == 0) and (h > 0) and (k > 0) and (l > 0) :
      flag = flags_5.data()[i_hkl]
      if (not flag) :
        n_flipped += 1
        flags_5.data()[i_hkl] = True
  # XXX check this for reproducibility on other systems
  #assert (n_flipped == 1559) # setting the random seed should ensure this
  try :
    flags_8 = flags_5.average_bijvoet_mates()
  except Sorry :
    pass
  else :
    raise Exception_expected
  out = StringIO()
  flags_9 = remediate_mismatches(flags_5, log=out)
  # XXX check this for reproducibility on other systems
  #assert (out.getvalue() == "  1559 reflections moved to test set\n")
  flags_10 = flags_9.average_bijvoet_mates()
Exemplo n.º 28
0
def test_fast_mcd_large():

  from scitbx.array_family import flex
  from dials.algorithms.statistics.fast_mcd import FastMCD

  # set random seeds to try to avoid assertion errors due to occasionally
  # finding less common solutions
  import random
  random.seed(42)
  flex.set_random_seed(42)

  # test large dataset algorithm
  import libtbx.load_env # required for libtbx.env.find_in_repositories
  if not libtbx.env.has_module("dials_regression"):
    print "Skipping test_fast_mcd_large(): dials_regression not available."
    return

  # load data
  import os
  dials_regression = libtbx.env.find_in_repositories(
      relative_path="dials_regression",
      test=os.path.isdir)
  data_pth = os.path.join(dials_regression, "refinement_test_data",
    "outlier_rejection", "residuals.dat")

  with(open(data_pth, "r")) as f:
    residuals = f.readlines()

  # ignore first line, which is a header
  residuals = [[float(val) for val in e.split()] for e in residuals[1:]]
  X_resid_mm, Y_resid_mm, Phi_resid_mm = zip(*residuals)

  X_resid_mm = flex.double(X_resid_mm)
  Y_resid_mm = flex.double(Y_resid_mm)
  Phi_resid_mm = flex.double(Phi_resid_mm)

  # Fast MCD raw estimates
  fast_mcd = FastMCD([X_resid_mm, Y_resid_mm, Phi_resid_mm])
  T, S = fast_mcd.get_raw_T_and_S()
  from libtbx.test_utils import approx_equal
  assert approx_equal(T,
    [-0.009702392946856687, 0.008866136837504363, -0.04909037126352747])
  assert approx_equal(S, flex.double(
    [[0.00527965256891, 0.000864300169087, -0.00145971018701],
     [0.000864300169087, 0.00842807897907, -0.00184047321286],
     [-0.00145971018701, -0.00184047321286, 0.00698461269031]]))

  # Fast MCD corrected estimates
  T, S = fast_mcd.get_corrected_T_and_S()
  assert approx_equal(T,
    [-0.009702392946856687, 0.008866136837504363, -0.04909037126352747])
  assert approx_equal(S, flex.double(
    [[0.0129950608638, 0.00212734325892, -0.00359285435473],
     [0.00212734325892, 0.0207444330604, -0.00453004456394],
     [-0.00359285435473, -0.00453004456394, 0.0171915605878]]))

  # Correction factors
  assert approx_equal(fast_mcd._consistency_fac, 2.45659976388)
  assert approx_equal(fast_mcd._finite_samp_fac, 1.00193273884)

  print "OK"
  return
Exemplo n.º 29
0
def exercise_analyze_absences():
    """
  Looping over common space groups in macromolecular structures, generate
  synthetic data converted to the derived intensity group with absent
  reflections present (I=0), and run the analysis to check that the actual
  space group is the best-scoring.
  """
    # space groups found in structures with data in the PDB as of Sep. 2011,
    # minus a few unusual ones
    symbols = [
        "C 2 2 21",
        "P 31 1 2",
        "P 62 2 2",
        "P 2 3",
        "P 3",
        "P 1",
        "P 63",
        "C 1 2 1",
        "F 2 2 2",
        "A 1 2 1",
        "B 1 1 2",
        "P 61",
        "P 61 2 2",
        "P 6 2 2",
        "P 2 21 21",
        "P 21 21 21",
        "R 3 2 :R",
        "P 4 3 2",
        "P 1 21 1",
        "P 32 2 1",
        "P 42 2 2",
        "P 43 21 2",
        "P 21 2 21",
        "I 2 3",
        "P 43 3 2",
        "I 41 3 2",
        "P 3 1 2",
        "P 2 2 2",
        "R 3 :H",
        "P 21 21 2",
        "P 65 2 2",
        "P 21 21 2",
        "F 2 3",
        "I 41 2 2",
        "P 65",
        "P 1 1 21",
        "P 2 2 21",
        "P 4 2 2",
        "I 2 2 2",
        "I 4 3 2",
        "R 3 :R",
        "P 4",
        "P 42",
        "P 64 2 2",
        "I 1 2 1",
        "P 64",
        "C 1 2 1",
        "I 41",
        "P 63 2 2",
        "P 3 2 1",
        "P 41 2 2",
        "P 62",
        "P 1",
        "P 32 1 2",
        "F 4 3 2",
        "P 31 2 1",
        "I 4 2 2",
        "P 21 3",
        "P 43 2 2",
        "C 2 2 2",
        "P 4 21 2",
        "B 2 21 2",
        "P 41 21 2",
        "P 31",
        "P 41",
        "P 41 3 2",
        "P 32",
        "P 6",
        "P 1 2 1",
        "I 21 3",
        "F 41 3 2",
        "P 42 3 2",
        "P 42 21 2",
        "P 43",
        "I 21 21 21",
        "R 3 2 :H",
        "I 4",
    ]
    random.seed(987654321)
    flex.set_random_seed(987654321)  # 12345)
    for symbol in ["P 42 3 2"]:  # symbols :
        xrs = random_structure.xray_structure(space_group_symbol=symbol, elements=["O"] * 200, n_scatterers=200)
        fc = abs(xrs.structure_factors(d_min=1.5).f_calc())
        fc.set_observation_type_xray_amplitude()
        i_calc = fc.f_as_f_sq()
        space_group_info = i_calc.crystal_symmetry().space_group_info()
        n_absent = i_calc.sys_absent_flags().data().count(True)
        assert n_absent == 0
        ig = space_group_info.group().build_derived_reflection_intensity_group(False)
        complete_set = i_calc.complete_set()
        missing_set = complete_set.lone_set(i_calc)
        assert missing_set.size() == 0  # should be complete so far
        i_calc_orig = i_calc.deep_copy().customized_copy(sigmas=flex.double(i_calc.size(), 0.01))
        symm = i_calc.crystal_symmetry().customized_copy(space_group_info=ig.info())
        i_calc = i_calc.customized_copy(crystal_symmetry=symm)
        # i_calc.show_summary()
        complete_set = i_calc.complete_set()
        missing_set = complete_set.lone_set(i_calc)  # these are the absences
        data = flex.double(missing_set.size(), 0.01)
        sys_abs = missing_set.array(data=data)
        i_calc = i_calc.concatenate(sys_abs)
        sigmas = flex.double(i_calc.size(), 0.01)
        i_calc = i_calc.customized_copy(sigmas=sigmas)
        i_calc = i_calc.set_observation_type_xray_intensity()
        # i_calc is now complete with respect to the derived reflection intensity
        # group, with I/sigma=1 for all systematic absences
        psgc = protein_space_group_choices(miller_array=i_calc, original_data=i_calc_orig)
        table = psgc.suggest_likely_candidates()
        min_score = min([row[-1] for row in table])
        expected_failures = ["I 4", "I 4 2 2", "P 42 3 2"]
        # The actual space group won't always be the first on the list (if the
        # absence rules are the same for more than one related space group), but
        # it should always have the lowest score.  (I think...)
        for row in table:
            group = row[0]
            score = row[-1]
            n_abs_viol = int(row[4])
            n_pres_viol = int(row[5])
            if group == str(space_group_info):
                assert n_abs_viol == 0, row
                if n_pres_viol != 0:
                    print group, n_pres_viol
                    psgc.show()
                # XXX Currently this fails for the following space groups:
                #     I 4
                #     I 4 2 2
                #     P 42 3 2
                assert (score == min_score) or (str(space_group_info) in expected_failures)
Exemplo n.º 30
0
from __future__ import division
from libtbx.test_utils import approx_equal
import mmtbx.f_model
import random, time
from scitbx.array_family import flex
from mmtbx import bulk_solvent
from cctbx import adptbx
from cctbx import sgtbx
from cctbx.development import random_structure
import boost.python
ext = boost.python.import_ext("mmtbx_f_model_ext")
from mmtbx.bulk_solvent import scaler

if(1):
  random.seed(0)
  flex.set_random_seed(0)

def run_0(symbol = "C 2"):
  space_group_info = sgtbx.space_group_info(symbol = symbol)
  xrs = random_structure.xray_structure(
    space_group_info  = space_group_info,
    elements          = ["N"]*50,
    volume_per_atom   = 100.0,
    random_u_iso      = True)
  #
  b_cart = adptbx.random_traceless_symmetry_constrained_b_cart(
    crystal_symmetry=xrs.crystal_symmetry())
  u_star = adptbx.u_cart_as_u_star(xrs.unit_cell(), adptbx.b_as_u(b_cart))
  #
  F = xrs.structure_factors(d_min = 1.5).f_calc()
  k_anisotropic = mmtbx.f_model.ext.k_anisotropic(F.indices(), u_star)
Exemplo n.º 31
0
def test_fast_mcd_small():

  from scitbx.array_family import flex
  from dials.algorithms.statistics.fast_mcd import FastMCD

  # set random seeds to try to avoid assertion errors due to occasionally
  # finding less common solutions
  import random
  random.seed(42)
  flex.set_random_seed(42)

  # some test data, from R package robustbase: Hawkins, Bradu, Kass's Artificial Data
  hbk = """10.1 19.6 28.3
   9.5 20.5 28.9
  10.7 20.2 31.0
   9.9 21.5 31.7
  10.3 21.1 31.1
  10.8 20.4 29.2
  10.5 20.9 29.1
   9.9 19.6 28.8
   9.7 20.7 31.0
   9.3 19.7 30.3
  11.0 24.0 35.0
  12.0 23.0 37.0
  12.0 26.0 34.0
  11.0 34.0 34.0
   3.4  2.9  2.1
   3.1  2.2  0.3
   0.0  1.6  0.2
   2.3  1.6  2.0
   0.8  2.9  1.6
   3.1  3.4  2.2
   2.6  2.2  1.9
   0.4  3.2  1.9
   2.0  2.3  0.8
   1.3  2.3  0.5
   1.0  0.0  0.4
   0.9  3.3  2.5
   3.3  2.5  2.9
   1.8  0.8  2.0
   1.2  0.9  0.8
   1.2  0.7  3.4
   3.1  1.4  1.0
   0.5  2.4  0.3
   1.5  3.1  1.5
   0.4  0.0  0.7
   3.1  2.4  3.0
   1.1  2.2  2.7
   0.1  3.0  2.6
   1.5  1.2  0.2
   2.1  0.0  1.2
   0.5  2.0  1.2
   3.4  1.6  2.9
   0.3  1.0  2.7
   0.1  3.3  0.9
   1.8  0.5  3.2
   1.9  0.1  0.6
   1.8  0.5  3.0
   3.0  0.1  0.8
   3.1  1.6  3.0
   3.1  2.5  1.9
   2.1  2.8  2.9
   2.3  1.5  0.4
   3.3  0.6  1.2
   0.3  0.4  3.3
   1.1  3.0  0.3
   0.5  2.4  0.9
   1.8  3.2  0.9
   1.8  0.7  0.7
   2.4  3.4  1.5
   1.6  2.1  3.0
   0.3  1.5  3.3
   0.4  3.4  3.0
   0.9  0.1  0.3
   1.1  2.7  0.2
   2.8  3.0  2.9
   2.0  0.7  2.7
   0.2  1.8  0.8
   1.6  2.0  1.2
   0.1  0.0  1.1
   2.0  0.6  0.3
   1.0  2.2  2.9
   2.2  2.5  2.3
   0.6  2.0  1.5
   0.3  1.7  2.2
   0.0  2.2  1.6
   0.3  0.4  2.6"""

  # unpack the data into vectors
  rows = [[float(e) for e in row.split()] for row in hbk.splitlines()]
  x1, x2, x3 = [flex.double(e) for e in zip(*rows)]

  # Fast MCD raw estimates
  fast_mcd = FastMCD([x1, x2, x3])
  T, S = fast_mcd.get_raw_T_and_S()
  from libtbx.test_utils import approx_equal
  assert approx_equal(T,
    [1.5333333333333334, 2.4564102564102566, 1.6076923076923078])
  assert approx_equal(S, flex.double(
    [[1.18964912281, 0.00464912280702, 0.217368421053],
     [0.00464912280702, 0.37620782726, 0.182186234818],
     [0.217368421053, 0.182186234818, 0.910728744939]]))

  # Fast MCD corrected estimates
  T, S = fast_mcd.get_corrected_T_and_S()
  assert approx_equal(T,
    [1.5333333333333334, 2.4564102564102566, 1.6076923076923078])
  assert approx_equal(S, flex.double(
    [[3.17735853174, 0.012417047794, 0.58055555535],
     [0.01241704779, 1.00478967011, 0.486589681332],
     [0.58055555535, 0.486589681332, 2.43240775146]]))

  # Correction factors
  assert approx_equal(fast_mcd._consistency_fac, 2.36792847084)
  assert approx_equal(fast_mcd._finite_samp_fac, 1.12792118859)

  print "OK"
  return