Exemplo n.º 1
0
    def _get_trajopt_obj(self, plan, active_ts=None):
        if active_ts == None:
            active_ts = (0, plan.horizon - 1)
        start, end = active_ts
        traj_objs = []
        for param in plan.params.values():
            if param not in self._param_to_ll:
                continue
            if param._type in ['Robot', 'Can']:
                for attr_name in param.__dict__.iterkeys():
                    attr_type = param.get_attr_type(attr_name)
                    if issubclass(attr_type, Vector):
                        T = end - start + 1
                        K = attr_type.dim
                        attr_val = getattr(param, attr_name)
                        KT = K * T
                        v = -1 * np.ones((KT - K, 1))
                        d = np.vstack((np.ones((KT - K, 1)), np.zeros((K, 1))))
                        # [:,0] allows numpy to see v and d as one-dimensional so
                        # that numpy will create a diagonal matrix with v and d as a diagonal
                        P = np.diag(v[:, 0], K) + np.diag(d[:, 0])
                        Q = np.dot(np.transpose(P), P)

                        quad_expr = QuadExpr(Q, np.zeros((1, KT)),
                                             np.zeros((1, 1)))
                        robot_ll = self._param_to_ll[param]
                        ll_attr_val = getattr(robot_ll, attr_name)
                        robot_ll_grb_vars = ll_attr_val.reshape((KT, 1),
                                                                order='F')
                        # init_val = attr_val[:, start:end+1].reshape((KT, 1), order='F')
                        # bexpr = BoundExpr(quad_expr, Variable(robot_ll_grb_vars, init_val))
                        bexpr = BoundExpr(quad_expr,
                                          Variable(robot_ll_grb_vars))
                        traj_objs.append(bexpr)
        return traj_objs
Exemplo n.º 2
0
    def _get_trajopt_obj(self, plan, active_ts=None):
        if active_ts == None:
            active_ts = (0, plan.horizon - 1)
        start, end = active_ts
        traj_objs = []
        for param in plan.params.values():
            if param not in self._param_to_ll:
                continue
            if param._type in ['Robot', 'Can']:
                T = end - start + 1
                K = 2
                pose = param.pose
                KT = K * T
                v = -1 * np.ones((KT - K, 1))
                d = np.vstack((np.ones((KT - K, 1)), np.zeros((K, 1))))
                # [:,0] allows numpy to see v and d as one-dimensional so
                # that numpy will create a diagonal matrix with v and d as a diagonal
                P = np.diag(v[:, 0], K) + np.diag(d[:, 0])
                Q = np.dot(np.transpose(P), P)

                Q *= TRAJOPT_COEFF

                quad_expr = QuadExpr(Q, np.zeros((1, KT)), np.zeros((1, 1)))
                robot_ll = self._param_to_ll[param]
                robot_ll_grb_vars = robot_ll.pose.reshape((KT, 1), order='F')
                init_val = param.pose[:, start:end + 1].reshape((KT, 1),
                                                                order='F')
                bexpr = BoundExpr(quad_expr,
                                  Variable(robot_ll_grb_vars, init_val))
                traj_objs.append(bexpr)
        return traj_objs
Exemplo n.º 3
0
 def _get_transfer_obj(self, plan, norm):
     transfer_objs = []
     if norm == 'min-vel':
         for param in plan.params.values():
             if param._type in ['Robot', 'Can']:
                 T = plan.horizon
                 K = 2
                 pose = param.pose
                 assert (K, T) == pose.shape
                 KT = K * T
                 v = -1 * np.ones((KT - K, 1))
                 d = np.vstack((np.ones((KT - K, 1)), np.zeros((K, 1))))
                 # [:,0] allows numpy to see v and d as one-dimensional so
                 # that numpy will create a diagonal matrix with v and d as a diagonal
                 P = np.diag(v[:, 0], K) + np.diag(d[:, 0])
                 Q = np.dot(np.transpose(P), P)
                 cur_pose = pose.reshape((KT, 1), order='F')
                 A = -2 * cur_pose.T.dot(Q)
                 b = cur_pose.T.dot(Q.dot(cur_pose))
                 # QuadExpr is 0.5*x^Tx + Ax + b
                 quad_expr = QuadExpr(2 * self.transfer_coeff * Q,
                                      self.transfer_coeff * A,
                                      self.transfer_coeff * b)
                 ll_param = self._param_to_ll[param]
                 ll_grb_vars = ll_param.pose.reshape((KT, 1), order='F')
                 bexpr = BoundExpr(quad_expr,
                                   Variable(ll_grb_vars, cur_pose))
                 transfer_objs.append(bexpr)
     else:
         raise NotImplemented
     return transfer_objs
Exemplo n.º 4
0
    def _add_pred_dict(self, pred_dict, effective_timesteps, add_nonlin=True,
                       priority=MAX_PRIORITY, verbose=False):
        """
            This function creates constraints for the predicate and added to
            Prob class in sco.
        """
        ## for debugging
        ignore_preds = []
        priority = np.maximum(priority, 0)
        if not pred_dict['hl_info'] == "hl_state":
            start, end = pred_dict['active_timesteps']
            active_range = range(start, end+1)
            if verbose:
                print "pred being added: ", pred_dict
                print active_range, effective_timesteps
            negated = pred_dict['negated']
            pred = pred_dict['pred']

            if pred.get_type() in ignore_preds:
                return

            if pred.priority > priority: return
            if DEBUG: assert isinstance(pred, common_predicates.ExprPredicate)
            expr = pred.get_expr(negated)

            if expr is not None:
                if add_nonlin or isinstance(expr.expr, AffExpr):
                    for t in effective_timesteps:
                        if t in active_range:
                            if verbose:
                                print "expr being added at time ", t
                            var = self._spawn_sco_var_for_pred(pred, t)
                            bexpr = BoundExpr(expr, var)

                            # TODO: REMOVE line below, for tracing back predicate for debugging.
                            if DEBUG:
                                bexpr.source = (negated, pred, t)
                            self._bexpr_to_pred[bexpr] = (negated, pred, t)
                            groups = ['all']
                            if self.early_converge:
                                ## this will check for convergence per parameter
                                ## this is good if e.g., a single trajectory quickly
                                ## gets stuck
                                groups.extend([param.name for param in pred.params])
                            self._prob.add_cnt_expr(bexpr, groups)
Exemplo n.º 5
0
    def _resample(self, plan, preds):
        val, attr_inds = None, None
        for negated, pred, t in preds:
            ## returns a vector of new values and an
            ## attr_inds (OrderedDict) that gives the mapping
            ## to parameter attributes
            if (self.early_converge and self._failed_groups != ['all']
                    and self._failed_groups != [] and not np.any([
                        param.name in self._failed_groups
                        for param in pred.params
                    ])):
                ## using early converge and one group didn't converge
                ## but no parameter from this pred in that group
                continue

            val, attr_inds = pred.resample(negated, t, plan)
            ## no resample defined for that pred
            if val is not None: break
        if val is None:
            # import pdb; pdb.set_trace()
            return []

        t_local = t
        bexprs = []
        i = 0
        for p in attr_inds:
            ## get the ll_param for p and gurobi variables
            ll_p = self._param_to_ll[p]
            if p.is_symbol(): t_local = 0
            n_vals = 0
            grb_vars = []
            for attr, ind_arr in attr_inds[p]:
                n_vals += len(ind_arr)
                grb_vars.extend(list(getattr(ll_p, attr)[ind_arr, t_local]))

            for j, grb_var in enumerate(grb_vars):
                ## create an objective saying stay close to this value
                ## e(x) = x^2 - 2*val[i+j]*x + val[i+j]^2
                Q = np.eye(1)
                A = -2 * val[i + j] * np.ones((1, 1))
                b = np.ones((1, 1)) * np.power(val[i + j], 2)
                # QuadExpr is 0.5*x^Tx + Ax + b
                quad_expr = QuadExpr(2 * Q * self.rs_coeff, A * self.rs_coeff,
                                     b * self.rs_coeff)
                v_arr = np.array([grb_var]).reshape((1, 1), order='F')
                init_val = np.ones((1, 1)) * val[i + j]
                bexpr = BoundExpr(quad_expr,
                                  Variable(v_arr, val[i + j].reshape((1, 1))))

                bexprs.append(bexpr)

            i += n_vals
        return bexprs
Exemplo n.º 6
0
    def _add_pred_dict(self, pred_dict, effective_timesteps, add_nonlin=True, priority=MAX_PRIORITY, verbose=False):
        ## for debugging
        ignore_preds = []
        priority = np.maximum(priority, 0)
        if not pred_dict["hl_info"] == "hl_state":
            start, end = pred_dict["active_timesteps"]
            active_range = range(start, end + 1)
            if verbose:
                print "pred being added: ", pred_dict
                print active_range, effective_timesteps
            negated = pred_dict["negated"]
            pred = pred_dict["pred"]

            if pred.get_type() in ignore_preds:
                return

            if pred.priority > priority:
                return
            assert isinstance(pred, common_predicates.ExprPredicate)
            expr = pred.get_expr(negated)

            for t in effective_timesteps:
                if t in active_range:
                    if expr is not None:
                        if add_nonlin or isinstance(expr.expr, AffExpr):
                            if verbose:
                                print "expr being added at time ", t
                            var = self._spawn_sco_var_for_pred(pred, t)
                            bexpr = BoundExpr(expr, var)
                            # TODO: REMOVE line below, for tracing back predicate for debugging.
                            bexpr.pred = pred
                            self._bexpr_to_pred[bexpr] = (negated, pred, t)
                            groups = ["all"]
                            if self.early_converge:
                                ## this will check for convergence per parameter
                                ## this is good if e.g., a single trajectory quickly
                                ## gets stuck
                                groups.extend([param.name for param in pred.params])
                            self._prob.add_cnt_expr(bexpr, groups)
Exemplo n.º 7
0
    def _get_trajopt_obj(self, plan, active_ts=None):
        """
            This function selects parameter of type Robot and Can and returns
            the expression e(x) = |Px|^2
            Which optimize trajectory so that robot and can's attributes in
            current timestep is close to that of next timestep.
            forming a straight line between each end points.

            Where P is the KT x KT matrix, where Px is the difference of
            value in current timestep compare to next timestep
        """
        if active_ts == None:
            active_ts = (0, plan.horizon-1)
        start, end = active_ts
        traj_objs = []
        for param in plan.params.values():
            if param not in self._param_to_ll:
                continue
            if param._type in ['Robot', 'Can']:
                for attr_name in param.__dict__.iterkeys():
                    attr_type = param.get_attr_type(attr_name)
                    if issubclass(attr_type, Vector):
                        T = end - start + 1
                        K = attr_type.dim
                        attr_val = getattr(param, attr_name)
                        KT = K*T
                        v = -1 * np.ones((KT - K, 1))
                        d = np.vstack((np.ones((KT - K, 1)), np.zeros((K, 1))))
                        # [:,0] allows numpy to see v and d as one-dimensional so
                        # that numpy will create a diagonal matrix with v and d as a diagonal
                        P = np.diag(v[:, 0], K) + np.diag(d[:, 0])
                        Q = np.dot(np.transpose(P), P)
                        Q *= TRAJOPT_COEFF

                        quad_expr = None
                        if attr_name == 'pose' and param._type == 'Robot':
                            quad_expr = QuadExpr(BASE_MOVE_COEFF*Q,
                                                 np.zeros((1,KT)),
                                                 np.zeros((1,1)))
                        else:
                            quad_expr = QuadExpr(Q, np.zeros((1,KT)), np.zeros((1,1)))
                        param_ll = self._param_to_ll[param]
                        ll_attr_val = getattr(param_ll, attr_name)
                        param_ll_grb_vars = ll_attr_val.reshape((KT, 1), order='F')
                        attr_val = getattr(param, attr_name)
                        init_val = attr_val[:, start:end+1].reshape((KT, 1), order='F')
                        bexpr = BoundExpr(quad_expr, Variable(param_ll_grb_vars, init_val))
                        # bexpr = BoundExpr(quad_expr, Variable(param_ll_grb_vars))
                        traj_objs.append(bexpr)
        return traj_objs
Exemplo n.º 8
0
    def _get_transfer_obj(self, plan, norm):
        """
            This function returns the expression e(x) = P|x - cur|^2
            Which says the optimized trajectory should be close to the
            previous trajectory.
            Where P is the KT x KT matrix, where Px is the difference of parameter's attributes' current value and parameter's next timestep value
        """

        transfer_objs = []
        if norm == 'min-vel':
            for param in plan.params.values():
                for attr_name in param.__dict__.iterkeys():
                    attr_type = param.get_attr_type(attr_name)
                    if issubclass(attr_type, Vector):
                        param_ll = self._param_to_ll[param]
                        if param.is_symbol():
                            T = 1
                            attr_val = getattr(param, attr_name)
                        else:
                            T = param_ll._horizon
                            attr_val = getattr(param, attr_name)[:, param_ll.active_ts[0]:param_ll.active_ts[1]+1]
                        K = attr_type.dim

                        # pose = param.pose
                        if DEBUG: assert (K, T) == attr_val.shape
                        KT = K*T
                        v = -1 * np.ones((KT - K, 1))
                        d = np.vstack((np.ones((KT - K, 1)), np.zeros((K, 1))))
                        # [:,0] allows numpy to see v and d as one-dimensional so
                        # that numpy will create a diagonal matrix with v and d as a diagonal
                        P = np.diag(v[:, 0], K) + np.diag(d[:, 0])
                        # P = np.eye(KT)
                        Q = np.dot(np.transpose(P), P) if not param.is_symbol() else np.eye(KT)
                        cur_val = attr_val.reshape((KT, 1), order='F')
                        A = -2*cur_val.T.dot(Q)
                        b = cur_val.T.dot(Q.dot(cur_val))
                        transfer_coeff = self.transfer_coeff/float(plan.horizon)

                        # QuadExpr is 0.5*x^Tx + Ax + b
                        quad_expr = QuadExpr(2*transfer_coeff*Q,
                                             transfer_coeff*A, transfer_coeff*b)
                        ll_attr_val = getattr(param_ll, attr_name)
                        param_ll_grb_vars = ll_attr_val.reshape((KT, 1), order='F')
                        sco_var = self.create_variable(param_ll_grb_vars, cur_val)
                        bexpr = BoundExpr(quad_expr, sco_var)
                        transfer_objs.append(bexpr)
        else:
            raise NotImplemented
        return transfer_objs
Exemplo n.º 9
0
    def _resample(self, plan, preds):
        """
            This function first calls fail predicate's resample function,
            then, uses the resampled value to create a square difference cost
            function e(x) = |x - rs_val|^2 that will be minimized later.
            rs_val is the resampled value
        """
        val, attr_inds = None, None
        for negated, pred, t in preds:
            ## returns a vector of new values and an
            ## attr_inds (OrderedDict) that gives the mapping
            ## to parameter attributes
            val, attr_inds = pred.resample(negated, t, plan)
            ## if no resample defined for that pred, continue
            if val is not None: break
        if val is None:
            return []

        bexprs, i = [], 0
        for p in attr_inds:
            ## get the ll_param for p and gurobi variables
            ll_p = self._param_to_ll[p]
            n_vals = 0
            grb_vars = []
            for attr, ind_arr, t in attr_inds[p]:
                n_vals += len(ind_arr)
                grb_vars.extend(
                    list(getattr(ll_p, attr)[ind_arr, t].flatten()))

            for j, grb_var in enumerate(grb_vars):
                ## create an objective saying stay close to the resampled value
                ## e(x) = (x - val[i+j])**2
                ## e(x) = x^2 - 2*val[i+j]*x + val[i+j]^2
                Q = np.eye(1)
                A = -2*val[i+j]*np.ones((1, 1))
                b = np.ones((1, 1))*np.power(val[i+j], 2)
                # QuadExpr is 0.5*x^Tx + Ax + b
                quad_expr = QuadExpr(2*Q*self.rs_coeff, A*self.rs_coeff, b*self.rs_coeff)
                v_arr = np.array([grb_var]).reshape((1, 1), order='F')
                init_val = np.ones((1, 1))*val[i+j]
                bexpr = BoundExpr(quad_expr,
                                  Variable(v_arr, val[i+j].reshape((1, 1))))
                bexprs.append(bexpr)
            i += n_vals
        return bexprs
Exemplo n.º 10
0
 def _resample(self, plan, preds, sample_all = False):
     """
         This function first calls fail predicate's resample function,
         then, uses the resampled value to create a square difference cost
         function e(x) = |x - rs_val|^2 that will be minimized later.
         rs_val is the resampled value
     """
     bexprs = []
     val, attr_inds = None, None
     pred_type = {}
     for negated, pred, t in preds:
         ## returns a vector of new values and an
         ## attr_inds (OrderedDict) that gives the mapping
         ## to parameter attributes
         if pred_type.get(pred.get_type, False):
             continue
         val, attr_inds = pred.resample(negated, t, plan)
         if val is not None: pred_type[pred.get_type] = True
         ## if no resample defined for that pred, continue
         if val is not None:
             for p in attr_inds:
                 ## get the ll_param for p and gurobi variables
                 ll_p = self._param_to_ll[p]
                 n_vals, i = 0, 0
                 grb_vars = []
                 for attr, ind_arr, t in attr_inds[p]:
                     for j, grb_var in enumerate(getattr(ll_p, attr)[ind_arr, t-ll_p.active_ts[0]].flatten()):
                         Q = np.eye(1)
                         A = -2*val[p][i+j]*np.ones((1, 1))
                         b = np.ones((1, 1))*np.power(val[p][i+j], 2)
                         resample_coeff = self.rs_coeff/float(plan.horizon)
                         # QuadExpr is 0.5*x^Tx + Ax + b
                         quad_expr = QuadExpr(2*Q*resample_coeff, A*resample_coeff, b*resample_coeff)
                         v_arr = np.array([grb_var]).reshape((1, 1), order='F')
                         init_val = np.ones((1, 1))*val[p][i+j]
                         sco_var = self.create_variable(v_arr, np.array([val[p][i+j]]).reshape((1, 1)), save = True)
                         bexpr = BoundExpr(quad_expr, sco_var)
                         bexprs.append(bexpr)
                     i += len(ind_arr)
             if not sample_all:
                 break
     return bexprs
Exemplo n.º 11
0
    def _get_transfer_obj(self, plan, norm):
        transfer_objs = []
        if norm == 'min-vel':
            for param in plan.params.values():
                # if param._type in ['Robot', 'Can', 'EEPose']:
                for attr_name in param.__dict__.iterkeys():
                    attr_type = param.get_attr_type(attr_name)
                    if issubclass(attr_type, Vector):
                        if param.is_symbol():
                            T = 1
                        else:
                            T = plan.horizon
                        K = attr_type.dim
                        attr_val = getattr(param, attr_name)

                        # pose = param.pose
                        assert (K, T) == attr_val.shape
                        KT = K * T
                        v = -1 * np.ones((KT - K, 1))
                        d = np.vstack((np.ones((KT - K, 1)), np.zeros((K, 1))))
                        # [:,0] allows numpy to see v and d as one-dimensional so
                        # that numpy will create a diagonal matrix with v and d as a diagonal
                        P = np.diag(v[:, 0], K) + np.diag(d[:, 0])
                        Q = np.dot(np.transpose(P), P)
                        cur_val = attr_val.reshape((KT, 1), order='F')
                        A = -2 * cur_val.T.dot(Q)
                        b = cur_val.T.dot(Q.dot(cur_val))
                        # QuadExpr is 0.5*x^Tx + Ax + b
                        quad_expr = QuadExpr(2 * self.transfer_coeff * Q,
                                             self.transfer_coeff * A,
                                             self.transfer_coeff * b)
                        param_ll = self._param_to_ll[param]
                        ll_attr_val = getattr(param_ll, attr_name)
                        param_ll_grb_vars = ll_attr_val.reshape((KT, 1),
                                                                order='F')
                        bexpr = BoundExpr(quad_expr,
                                          Variable(param_ll_grb_vars, cur_val))
                        transfer_objs.append(bexpr)
        else:
            raise NotImplemented
        return transfer_objs
Exemplo n.º 12
0
 def _update(self, plan, update_values):
     bexprs = []
     for val, attr_inds in update_values:
         if val is not None:
             for p in attr_inds:
                 ## get the ll_param for p and gurobi variables
                 ll_p = self._param_to_ll[p]
                 n_vals, i = 0, 0
                 grb_vars = []
                 for attr, ind_arr, t in attr_inds[p]:
                     for j, grb_var in enumerate(getattr(ll_p, attr)[ind_arr, t-ll_p.active_ts[0]].flatten()):
                         Q = np.eye(1)
                         A = -2*val[p][i+j]*np.ones((1, 1))
                         b = np.ones((1, 1))*np.power(val[p][i+j], 2)
                         resample_coeff = self.rs_coeff/float(plan.horizon)
                         # QuadExpr is 0.5*x^Tx + Ax + b
                         quad_expr = QuadExpr(2*Q*resample_coeff, A*resample_coeff, b*resample_coeff)
                         v_arr = np.array([grb_var]).reshape((1, 1), order='F')
                         init_val = np.ones((1, 1))*val[p][i+j]
                         sco_var = self.create_variable(v_arr, np.array([val[p][i+j]]).reshape((1, 1)), save = True)
                         bexpr = BoundExpr(quad_expr, sco_var)
                         bexprs.append(bexpr)
                     i += len(ind_arr)
     return bexprs