Exemplo n.º 1
0
    def __call__(self, x):
        """This is the objective function to be minimized with Bayesian optimization.

        This function changes the training hyperparameters as provided by x and trains a model. This model
        is then evaluated. The selected  optimization criteria is returned by the evaluation function, and will be
        provided as scalar output.

        Args:
            x(np.array): 2-D array with a where every row is a list of options.

        Returns:
            np.array: 2-D array with the cost of the objective per row.
        """
        self.opt.script = "generative"

        y = np.zeros((x.shape[0], 1))
        for i in range(x.shape[0]):
            # Overwrite default options with options provided by the bayesian optimization
            self.opt = self._set_options(self.opt, x, i)

            self.opt.mode = 'train'
            print_flags(self.opt)
            train(self.opt)
            self.opt.mode = 'test'
            y[i], stats = test(self.opt)
            self._store_stats(stats, vars(self.opt), y[i])
            if self.opt.two_test:
                self.opt.use_test_set = 1
                res, stats = test(self.opt)
                self._store_stats(stats, vars(self.opt), res)
                self.opt.use_test_set = 0
            self.iter += 1

        return y
Exemplo n.º 2
0
def main():
    opt, parser = parse_arguments()
    opt = predefined(opt)
    print_flags(opt)

    if not osp.isdir(opt.out_folder):
        os.makedirs(opt.out_folder)

    if opt.script == 'generative':
        if opt.mode == 'train':
            train(opt)
        elif opt.mode == 'test':
            test(opt)
        elif opt.mode == 'generate':
            generate_data(opt)
        elif opt.mode == 'novelty':
            novelty(opt)
        elif opt.mode == 'qualitative':
            qualitative(opt)
        else:
            raise UnknownArgumentError(
                "--mode not recognized, please choose: [train, test, generate, qualitative, novelty]."
            )
    elif opt.script == 'bayesopt':
        optimize_bayesian(opt, parser)
    elif opt.script == 'grid':
        run_grid(opt, parser)
    else:
        raise UnknownArgumentError(
            "--script not recognized, please choose: [generative, bayesopt, grid]."
        )
Exemplo n.º 3
0
 def re_test(self, run_ids):
     self.opt.script = "generative"
     self.opt.mode = 'test'
     for run in run_ids:
         self.iter = run
         self.opt.save_suffix = "{}_{}".format(self.opt.bayes_mode,
                                               self.iter)
         y, stats = test(self.opt)
         self._store_stats(stats, vars(self.opt), y)
         if self.opt.two_test:
             self.opt.use_test_set = 1
             res, stats = test(self.opt)
             self._store_stats(stats, vars(self.opt), res)
             self.opt.use_test_set = 0