Exemplo n.º 1
0
def racing(args):
    track_layout = args["track_layout"]
    track_spec = np.genfromtxt("data/track_layout/" + track_layout + ".csv",
                               delimiter=",")
    if args["simulation"]:
        track = racing_env.ClosedTrack(track_spec, track_width=1.0)
        # setup ego car
        ego = offboard.DynamicBicycleModel(
            name="ego",
            param=base.CarParam(edgecolor="black"),
            system_param=base.SystemParam())
        mpc_cbf_param = base.MPCCBFRacingParam(vt=0.8)
        ego.set_state_curvilinear(np.zeros((X_DIM, )))
        ego.set_state_global(np.zeros((X_DIM, )))
        ego.start_logging()
        ego.set_ctrl_policy(
            offboard.MPCCBFRacing(mpc_cbf_param, ego.system_param))
        ego.ctrl_policy.set_timestep(0.1)
        ego.set_track(track)
        ego.ctrl_policy.set_track(track)
        # setup surrounding cars
        t_symbol = sp.symbols("t")
        car1 = offboard.NoDynamicsModel(
            name="car1", param=base.CarParam(edgecolor="orange"))
        car1.set_track(track)
        car1.set_state_curvilinear_func(t_symbol, 0.2 * t_symbol + 4.0,
                                        0.1 + 0.0 * t_symbol)
        car1.start_logging()
        car2 = offboard.NoDynamicsModel(
            name="car2", param=base.CarParam(edgecolor="orange"))
        car2.set_track(track)
        car2.set_state_curvilinear_func(t_symbol, 0.2 * t_symbol + 10.0,
                                        -0.1 + 0.0 * t_symbol)
        car2.start_logging()
        # setup simulation
        simulator = offboard.CarRacingSim()
        simulator.set_timestep(0.1)
        simulator.set_track(track)
        simulator.add_vehicle(ego)
        ego.ctrl_policy.set_racing_sim(simulator)
        simulator.add_vehicle(car1)
        simulator.add_vehicle(car2)
        simulator.sim(sim_time=50.0)
        with open("data/simulator/racing.obj", "wb") as handle:
            pickle.dump(simulator, handle, protocol=pickle.HIGHEST_PROTOCOL)
    else:
        with open("data/simulator/racing.obj", "rb") as handle:
            simulator = pickle.load(handle)
    if args["plotting"]:
        simulator.plot_simulation()
        simulator.plot_state("ego")
    if args["animation"]:
        simulator.animate(filename="racing", mpc_cbf=True)
Exemplo n.º 2
0
def set_vehicle(args):
    veh_name = args["veh_name"]
    initial_xcurv = (
        args["vx"],
        args["vy"],
        args["wz"],
        args["epsi"],
        args["s"],
        args["ey"],
    )
    veh_color = args["color"]
    # initial a ros node for vehicle
    rospy.init_node(veh_name, anonymous=True)
    # call ros service to add vehicle in simulator and visualization node
    add_vehicle_client_simulator(veh_name, veh_color)
    add_vehicle_client_visualization(veh_name, veh_color)
    veh = realtime.DynamicBicycleModel(name=veh_name, param=base.CarParam())
    veh.set_subscriber_track()
    veh.set_subscriber_input(veh_name)
    veh_state_topic = veh_name + "/state"
    veh.__pub_state = rospy.Publisher(veh_state_topic,
                                      VehicleState,
                                      queue_size=10)
    # get initial state in Frenet and X-Y coordinates
    veh.set_state_curvilinear(initial_xcurv)
    s0 = initial_xcurv[4]
    ey0 = initial_xcurv[5]
    veh.realtime_flag = True
    xglob0 = np.zeros((X_DIM, ))
    xglob0[0:3] = initial_xcurv[0:3]
    psi0 = racing_env.get_orientation(veh.lap_length, veh.lap_width,
                                      veh.point_and_tangent, s0, ey0)
    x0, y0 = racing_env.get_global_position(veh.lap_length, veh.lap_width,
                                            veh.point_and_tangent, s0, ey0)
    xglob0[3] = psi0
    xglob0[4] = x0
    xglob0[5] = y0
    veh.set_state_global(xglob0)
    loop_rate = 100
    timestep = 1 / loop_rate
    veh.set_timestep(timestep)
    r = rospy.Rate(loop_rate)  # 100Hz
    start_timer = datetime.datetime.now()
    tmp = 0
    msg_state = VehicleState()
    msg_state.name = veh_name

    while not rospy.is_shutdown():
        current_time = datetime.datetime.now()
        # update the vehicle's state at 100 Hz
        if (current_time -
                start_timer).total_seconds() > (tmp + 1) * (1 / 100):
            veh.forward_one_step(veh.realtime_flag)
            msg_state.state_curv = get_msg_xcurv(veh.xcurv)
            msg_state.state_glob = get_msg_xglob(veh.xglob)
            veh.__pub_state.publish(msg_state)
            tmp = tmp + 1
        else:
            pass
        r.sleep()
Exemplo n.º 3
0
 def add_vehicle(self, req):
     self.vehicles[req.name] = DynamicBicycleModel(name=req.name, param=base.CarParam())
     self.vehicles[req.name].xglob = np.zeros((X_DIM,))
     self.vehicles[req.name].xcurv = np.zeros((X_DIM,))
     self.vehicles[req.name].msg_state.name = req.name
     self.vehicles[req.name].set_subscriber_sim(req.name)
     self.num_vehicle = self.num_vehicle + 1
     return 1
def set_up_other_vehicles(track, num_veh):
    vehicles = []
    for index in range(0, num_veh):
        veh_name = "car" + str(index + 1)
        vehicles.append(
            offboard.NoDynamicsModel(name=veh_name,
                                     param=base.CarParam(edgecolor="orange")))
        vehicles[index].set_track(track)
    return vehicles
Exemplo n.º 5
0
 def __sub_veh_list_cb(self, msg):
     if self.num_veh == None:
         pass
     else:
         for index in range(self.num_veh):
             name = msg.vehicle_list[index]
             # ego vehicle
             if name == self.agent_name:
                 self.vehicles[name] = DynamicBicycleModel(name=name, param=base.CarParam())
                 self.vehicles[name].name = self.agent_name
                 self.vehicles[name].xglob = np.zeros((X_DIM,))
                 self.vehicles[name].xcurv = np.zeros((X_DIM,))
             # other vehicle
             else:
                 self.vehicles[name] = DynamicBicycleModel(name=name, param=base.CarParam())
                 self.vehicles[name].xglob = np.zeros((X_DIM,))
                 self.vehicles[name].xcurv = np.zeros((X_DIM,))
                 self.vehicles[name].timestep = self.timestep
                 self.vehicles[name].lap_length = self.lap_length
                 self.vehicles[name].lap_width = self.lap_width
                 self.vehicles[name].point_and_tangent = self.point_and_tangent
                 self.vehicles[name].set_subscriber_ctrl(name)
Exemplo n.º 6
0
 def add_vehicle(self, req):
     self.vehicles[req.name] = DynamicBicycleModel(name=req.name, param=base.CarParam())
     self.vehicles[req.name].ax = self.ax
     self.vehicles[req.name].xglob = np.zeros((X_DIM,))
     self.vehicles[req.name].xcurv = np.zeros((X_DIM,))
     self.num_vehicle = self.num_vehicle + 1
     (x_car, y_car, width_car, height_car, angle_car,) = self.vehicles[
         req.name
     ].get_vehicle_in_rectangle(self.vehicles[req.name].xglob)
     self.vehicles[req.name].patch = patches.Rectangle(
         (x_car, y_car), width_car, height_car, angle_car, color=req.color
     )
     self.vehicles[req.name].set_subscriber_visual(req.name)
     self.vehicles[req.name].ani = animation.FuncAnimation(
         self.fig,
         self.vehicles[req.name].update,
         init_func=self.vehicles[req.name].init,
     )
     return 1
Exemplo n.º 7
0
def tracking(args):
    track_layout = args["track_layout"]
    track_spec = np.genfromtxt("data/track_layout/" + track_layout + ".csv",
                               delimiter=",")
    if args["simulation"]:
        track = racing_env.ClosedTrack(track_spec, track_width=0.8)
        # setup ego car
        ego = offboard.DynamicBicycleModel(
            name="ego",
            param=base.CarParam(edgecolor="black"),
            system_param=base.SystemParam())
        ego.set_state_curvilinear(np.zeros((X_DIM, )))
        ego.set_state_global(np.zeros((X_DIM, )))
        ego.start_logging()
        if args["ctrl_policy"] == "pid":
            ego.set_ctrl_policy(offboard.PIDTracking(vt=0.8))
        elif args["ctrl_policy"] == "mpc-lti":
            mpc_lti_param = base.MPCTrackingParam(vt=0.8)
            ego.set_ctrl_policy(
                offboard.MPCTracking(mpc_lti_param, ego.system_param))
        else:
            raise NotImplementedError
        ego.ctrl_policy.set_timestep(0.1)
        ego.ctrl_policy.set_track(track)
        ego.set_track(track)
        # setup simulation
        simulator = offboard.CarRacingSim()
        simulator.set_timestep(0.1)
        simulator.set_track(track)
        simulator.add_vehicle(ego)
        ego.ctrl_policy.set_racing_sim(simulator)
        simulator.sim(sim_time=90.0)
        with open("data/simulator/tracking.obj", "wb") as handle:
            pickle.dump(simulator, handle, protocol=pickle.HIGHEST_PROTOCOL)
    else:
        with open("data/simulator/tracking.obj", "rb") as handle:
            simulator = pickle.load(handle)
    if args["plotting"]:
        simulator.plot_simulation()
        simulator.plot_state("ego")
    if args["animation"]:
        simulator.animate(filename="tracking", ani_time=250)
Exemplo n.º 8
0
def set_up_ego(timestep, track):
    ego = offboard.DynamicBicycleModel(name="ego",
                                       param=base.CarParam(edgecolor="black"),
                                       system_param=base.SystemParam())
    ego.set_timestep(timestep)
    # run the pid controller for the first lap to collect data
    pid_controller = offboard.PIDTracking(vt=0.7, eyt=0.0)
    pid_controller.set_timestep(timestep)
    ego.set_ctrl_policy(pid_controller)
    pid_controller.set_track(track)
    ego.set_state_curvilinear(np.zeros((X_DIM, )))
    ego.set_state_global(np.zeros((X_DIM, )))
    ego.start_logging()
    ego.set_track(track)
    # run mpc-lti controller for the second lap to collect data
    mpc_lti_param = base.MPCTrackingParam(vt=0.7, eyt=0.0)
    mpc_lti_controller = offboard.MPCTracking(mpc_lti_param, ego.system_param)
    mpc_lti_controller.set_timestep(timestep)
    mpc_lti_controller.set_track(track)
    return ego, pid_controller, mpc_lti_controller
Exemplo n.º 9
0
def linear_time_invariant():
    # define closed_track
    track_spec = np.array([
        [3, 0],
        [np.pi / 2 * 1.5, -1.5],
        [2, 0],
        [np.pi / 2 * 1.5, -1.5],
        [6, 0],
        [np.pi / 2 * 1.5, -1.5],
        [2.0, 0],
        [np.pi / 2 * 1.5, -1.5],
    ])
    track = racing_env.ClosedTrack(track_spec, track_width=1.0)
    # setup ego car
    ego = offboard.DynamicBicycleModel(name="ego",
                                       param=base.CarParam(edgecolor="black"))
    ego.set_state_curvilinear(np.array([0.3, 0, 0, 0, 0, 0]))
    ego.set_state_global(np.array([0.3, 0, 0, 0, 0, 0]))
    ego.set_ctrl_policy(offboard.PIDTracking(vt=0.5))
    ego.ctrl_policy.set_timestep(0.1)
    ego.set_track(track)
    # setup simulation
    simulator = offboard.CarRacingSim()
    simulator.set_timestep(0.1)
    simulator.set_track(track)
    simulator.add_vehicle(ego)
    ego.ctrl_policy.set_racing_sim(simulator)
    simulator.sim(sim_time=500.0)
    # calculate linearized dynamics
    xdata = np.stack(simulator.vehicles["ego"].xcurv_log, axis=0)
    udata = system_identification.get_udata(simulator.vehicles["ego"])
    lamb = 1e-9
    matrix_A, matrix_B, error = system_identification.linear_regression(
        xdata, udata, lamb)
    np.savetxt("data/track_layout/ellipse.csv", track_spec, delimiter=",")
    np.savetxt("data/sys/LTI/matrix_A.csv", matrix_A, delimiter=",")
    np.savetxt("data/sys/LTI/matrix_B.csv", matrix_B, delimiter=",")
    print(matrix_A)
    print(matrix_B)