def test_pipeline(): adata = scv.datasets.simulation(random_seed=0, n_vars=10) scv.pp.filter_and_normalize(adata) scv.pp.moments(adata) scv.tl.recover_dynamics(adata) scv.tl.velocity(adata) adata.var.velocity_genes = True scv.tl.velocity_graph(adata) scv.tl.velocity_embedding(adata) scv.tl.velocity_confidence(adata) scv.tl.latent_time(adata) with scv.GridSpec() as pl: pl.velocity_graph(adata) pl.velocity_embedding(adata, arrow_length=3, arrow_size=3, c='latent_time') pl.velocity_embedding_grid(adata, scale=.5, density=.5, c='latent_time', cmap='gnuplot') pl.velocity_embedding_stream(adata, c=adata.var_names[0], layer='velocity') pl.scatter(adata, basis=adata.var_names[0], c='velocity', use_raw=True) pl.hist( [adata.obs.initial_size_spliced, adata.obs.initial_size_unspliced])
def test_pipeline(): adata = scv.datasets.simulation(random_seed=0, n_vars=10) scv.pp.filter_and_normalize(adata, n_top_genes=5) scv.pp.pca(adata) scv.pp.moments(adata) scv.tl.recover_dynamics(adata) scv.tl.velocity(adata) scv.tl.velocity(adata, vkey="dynamical_velocity", mode="dynamical") adata.var.velocity_genes = True scv.tl.velocity_graph(adata) scv.tl.velocity_embedding(adata) scv.tl.velocity_confidence(adata) scv.tl.latent_time(adata) with scv.GridSpec() as pl: pl.velocity_graph(adata) pl.velocity_embedding(adata, arrow_length=3, arrow_size=3, c="latent_time") pl.velocity_embedding_grid(adata, scale=0.5, c="latent_time", cmap="gnuplot") pl.velocity_embedding_stream(adata, c=adata.var_names[0], layer="velocity") pl.scatter(adata, basis=adata.var_names[0], c="velocity", use_raw=True) pl.hist( [adata.obs.initial_size_spliced, adata.obs.initial_size_unspliced]) Ms, Mu = adata.layers["Ms"][0], adata.layers["Mu"][0] Vs, Vd = adata.layers["velocity"][0], adata.layers["dynamical_velocity"][0] Vpca, Vgraph = adata.obsm["velocity_pca"][0], adata.uns[ "velocity_graph"].data[:5] pars = adata[:, 0].var[["fit_alpha", "fit_gamma"]].values assert np.allclose(Ms, [0.8269, 1.0772, 0.9396, 1.0846, 1.0398], rtol=1e-2) assert np.allclose(Mu, [3.8412, 3.1976, 3.5523, 3.3433, 3.8006], rtol=1e-2) assert np.allclose(adata.X[0], [0.0, 0.0, 0.0, 0.4981, 0.0], rtol=1e-2) # assert np.allclose(Vpca, [0.0163, 0.0185, 0.0472, 0.0025], rtol=1e-2) assert np.allclose(Vd, [1.7582, 2.0214, 1.73, 0.6615, 1.5118], rtol=1e-2) assert np.allclose(Vs, [3.2961, 2.5254, 2.9926, 2.634, 3.1352], rtol=1e-2) assert np.allclose(Vgraph, [0.915, 0.5997, 0.8494, 0.1615, 0.7708], rtol=1e-2) assert np.allclose(pars, [4.9257, 0.3239], rtol=1e-2)