Exemplo n.º 1
0
x, y = scv.utils.get_cell_transitions(adata,
                                      basis='PHATE_seurat',
                                      starting_cell=1000)
ax = scv.pl.velocity_graph(adata,
                           c='lightgrey',
                           edge_width=.05,
                           show=False,
                           basis="PHATE_seurat")
ax = scv.pl.scatter(adata,
                    x=x,
                    y=y,
                    s=120,
                    c='ascending',
                    cmap='gnuplot',
                    ax=ax,
                    basis='PHATE_seurat')

adata.uns['neighbors']['distances'] = adata.obsp['distances']
adata.uns['neighbors']['connectivities'] = adata.obsp['connectivities']

scv.tl.paga(adata, groups='seurat_clusters')
df = scv.get_df(adata, 'paga/transitions_confidence', precision=2).T
df.style.background_gradient(cmap='Blues').format('{:.2g}')

scv.pl.paga(adata,
            basis='umap_seurat',
            size=50,
            alpha=.1,
            min_edge_width=2,
            node_size_scale=1.5,
            dpi=800)
Exemplo n.º 2
0
def export_text_data(velocity_data, args):
    driver_genes = scvelo.get_df(velocity_data, "rank_dynamical_genes/names")
    driver_genes.to_csv(args.output + "putative_driver_genes.tsv", sep="\t")
Exemplo n.º 3
0
scv.pl.velocity_embedding_stream(adata,
                                 basis="umap",
                                 color='latent_time',
                                 dpi=800,
                                 color_map='gnuplot')

scv.pl.velocity_embedding_stream(adata,
                                 basis="umap",
                                 color='root_cells',
                                 dpi=300,
                                 min_mass=0,
                                 density=1,
                                 color_map='gnuplot')

scv.tl.paga(adata, groups='velocity_clusters')
df = scv.get_df(adata, 'paga/transitions_confidence', precision=2).T
df.style.background_gradient(cmap='Blues').format('{:.2g}')

scv.pl.paga(adata,
            basis='umap',
            size=50,
            alpha=.1,
            min_edge_width=2,
            node_size_scale=1.5,
            dpi=800)

scv.pl.velocity(adata, "Msn", dpi=800)

scv.tl.rank_velocity_genes(adata, min_corr=.3)
df = scv.DataFrame(adata.uns['rank_velocity_genes']['names'])
df.head()
Exemplo n.º 4
0
                          dpi=300,
                          figsize=(10, 10),
                          color=clusters,
                          save='{}.png'.format(key),
                          title=key)

## Top drivers.

top_genes = samples['HT29_EV'].var['fit_likelihood'].sort_values(
    ascending=False).index
scv.pl.scatter(samples['HT29_EV'],
               basis=top_genes[:15],
               ncols=5,
               frameon=False)

## Top likelyhood genes.

outdir = 'results/trajectory/velocity_dynamical/velocity_genes_dynamical'
if not os.path.exists(outdir):
    os.makedirs(outdir)

scv.settings.figdir = outdir

for key, value in samples.items():
    scv.tl.rank_dynamical_genes(value, groupby=clusters)
    df = scv.get_df(value, 'rank_dynamical_genes/names')
    df.to_csv("{}/{}.tsv".format(outdir, key),
              sep='\t',
              header=True,
              index=False)