Exemplo n.º 1
0
def sample_crates(vector, offset, period):
    """ Returns the consumption rates of actor[offset]
    if the consuming actor is unfolded period times.
    NOTE: offset is 0-based
    """
    vector = cyclic(vector)
    pattern = [None] * (len(vector) // gcd(len(vector), period))
    for i in range(len(pattern)):
        start = offset + 1 + (i - 1) * period
        end = start + period
        pattern[i] = vector.sum(start, end)

    token_delta = pattern[0] - vector.sum(stop=offset + 1)
    return token_delta, cyclic(pattern)
Exemplo n.º 2
0
def sample_prates(vector, offset, period):
    """ Returns the production rates of unfolded actor [offset]
    if the producing actor is unfolded period times.
    NOTE: offset is 0-based
    """
    vector = cyclic(vector)
    pattern = [None] * (len(vector) // gcd(len(vector), period))
    for i in range(len(pattern)):
        start = offset + i * period
        end = start + period
        pattern[i] = vector.sum(start, end)

    token_delta = vector.sum(stop=offset)
    return token_delta, cyclic(pattern)
Exemplo n.º 3
0
def single_rate_equivalent(sdfg):
    hsdfg = nx.MultiDiGraph() if sdfg.is_multigraph() else nx.DiGraph()
    multi = nx.MultiDiGraph(sdfg)
    q = sdfg.repetition_vector()
    for v in sdfg:
        assert 'wcet' in sdfg.node[
            v], "Missing 'wcet' attribute for node {}".format(v)
        wcets = cyclic(sdfg.node[v]['wcet'])

        for i in range(q[v]):
            hsdfg.add_node((v, i + 1), wcet=wcets[i % len(wcets)])

        for u, _, key, data in multi.in_edges_iter(v, data=True, keys=True):
            prates = data.get('production')
            crates = data.get('consumption')
            tokens = data.get('tokens')
            for j in range(q[v]):
                i = predecessor(j + 1, **data)
                if sdfg.is_multigraph():
                    hsdfg.add_edge((u, (i - 1) % q[u] + 1), (v, j + 1),
                                   key=key,
                                   tokens=(q[u] - i) // q[u])
                else:
                    hsdfg.add_edge((u, (i - 1) % q[u] + 1), (v, j + 1),
                                   tokens=(q[u] - i) // q[u])

    assert hsdfg.number_of_nodes() == sum(q.values(
    )), "Size of HSDF graph must be equal to sum of repetition vector"
    return hsdfg
Exemplo n.º 4
0
def multi_rate_equivalent(sdfg):
    result = nx.MultiDiGraph()
    for v, data in sdfg.nodes_iter(data=True):
        phi = data.get('phases', 1)
        for i in range(phi):
            result.add_node((v, i + 1),
                            wcet=data.get('wcet', core.cyclic(0))[i])

    for v, w, data in sdfg.edges_iter(data=True):
        Tv = sdfg.node[v].get('phases', 1)
        Tw = sdfg.node[w].get('phases', 1)
        prates = data.get('production')
        crates = data.get('consumption')
        tokens = data.get('tokens')
        plen = len(prates)
        assert Tv == len(prates)
        assert Tw == len(crates)

        # consuming actor in unfolded graph has a single phase
        # and consumption rate equal to crates.sum()
        csum = crates.sum()

        # sum of production rates in multi-rate equivalent of unfolded graph
        psum = prates.sum()

        gvw = gcd(csum, psum)

        # iterate consuming actors
        for j in range(Tw):
            # determine which incoming channels must be added
            # see Algorithm ? in PhD thesis
            for i in range(plen):
                delta_i_n = tokens + prates.sum(stop=i +
                                                1) - crates.sum(stop=j + 1)
                delta_i1_n = tokens + prates.sum(stop=i) - crates.sum(stop=j +
                                                                      1)
                sol_min = (gvw - delta_i_n - 1) // gvw
                sol_max = (gvw - delta_i1_n - 1) // gvw

                if sol_min < sol_max:
                    # add channel
                    extra_data = dict()
                    if 'var' in data:
                        extra_data['var'] = data['var']

                    result.add_edge((v, i + 1), (w, j + 1),
                                    production=psum,
                                    consumption=csum,
                                    tokens=tokens + prates.sum(stop=i) +
                                    crates.sum(start=j + 1),
                                    **extra_data)

    return core.SDFGraph(result)
Exemplo n.º 5
0
def vectorize( ps, t, cs ):
    periods = cs.sum() // gcd( ps.sum(), cs.sum() )
    vs = list()
    for p in ps * periods:
        t += p
        if t >= cs[0]:
            # consume
            nops =-1 
            csum = 0
            while t >= cs[0]:
                t = t - cs[ 0 ]
                csum += cs[ 0 ]
                cs = cs[1:]
                nops += 1

            vs.append( csum )
            for _ in range( nops ):
                vs.append( 0 )

    return core.cyclic( vs )
Exemplo n.º 6
0
def unfold(sdfg, dct=None, **periods):
    if dct is not None:
        periods.update(dct)

    result = nx.MultiDiGraph()
    for v, data in sdfg.nodes_iter(data=True):
        Tv = periods.get(v, 1)
        for i in range(Tv):
            result.add_node((v, i + 1) if Tv > 1 else v,
                            wcet=data.get('wcet', core.cyclic(0))[i::Tv])

    for v, w, data in sdfg.edges_iter(data=True):
        Tv = periods.get(v, 1)
        Tw = periods.get(w, 1)
        prates = data.get('production', core.cyclic(1))
        crates = data.get('consumption', core.cyclic(1))
        tokens = data.get('tokens', 0)
        plen = len(prates)

        # consuming actor in unfolded graph has a single phase
        # and consumption rate equal to periods_w * crates.sum()
        csum = crates.sum() * Tw // gcd(Tw, len(crates))

        # sum of production rates in multi-rate equivalent of unfolded graph
        psum = prates.sum() * Tv // gcd(Tv, len(prates))

        gm = gcd(csum, psum)
        gvw = gcd(csum, prates.sum())

        # multiplicative inverse of (psum // gvw) modulo (gm // gvw)
        g_cd, mulinv, _ = xgcd(prates.sum() // gvw, gm // gvw)
        assert g_cd == 1

        # iterate consuming actors
        for j in range(Tw):
            # determine which incoming channels must be added
            incoming = set()

            # see Algorithm ? in PhD thesis
            sols = set()
            for n0 in range(len(crates) // gcd(len(crates), Tw)):
                for i0 in range(plen):
                    delta_i_n = tokens + prates.sum(stop=i0 + 1) - crates.sum(
                        stop=j + 1 + n0 * Tw)
                    delta_i1_n = tokens + prates.sum(stop=i0) - crates.sum(
                        stop=j + 1 + n0 * Tw)
                    sol_min = (gvw - delta_i_n - 1) // gvw
                    sol_max = (gvw - delta_i1_n - 1) // gvw

                    for sol in range(sol_min, sol_max):
                        s = (i0 + sol * mulinv * plen) % gcd(
                            Tv, plen * gm // gvw)
                        sols.add(s)

            for i_residue in sols:
                for i0 in range(i_residue, Tv, gcd(Tv, plen * gm // gvw)):
                    incoming.add(i0)

            # compute consumption rates for incoming channels
            tokens_c, incoming_crates = sample_crates(crates, j, Tw)

            # add incoming channels:
            for i in incoming:
                # compute production rates
                tokens_p, incoming_prates = sample_prates(prates, i, Tv)

                extra_data = dict()
                if 'var' in data:
                    extra_data['var'] = data['var']

                # add channel
                vi = (v, i + 1) if Tv > 1 else v
                wj = (w, j + 1) if Tw > 1 else w
                result.add_edge(vi,
                                wj,
                                production=incoming_prates,
                                consumption=incoming_crates,
                                tokens=tokens + tokens_c + tokens_p,
                                **extra_data)

    return core.SDFGraph(result)