Exemplo n.º 1
0
def test_conditional_sampling_dict():
    data = pd.DataFrame({
        'column1': [1.0, 0.5, 2.5] * 10,
        'column2': ['a', 'b', 'c'] * 10
    })

    model = CTGAN(epochs=1)
    model.fit(data)
    conditions = [Condition({'column2': 'b'}, num_rows=30)]
    sampled = model.sample_conditions(conditions=conditions)

    assert sampled.shape == data.shape
    assert set(sampled['column2'].unique()) == set(['b'])
Exemplo n.º 2
0
def test_conditional_sampling_two_conditions():
    data = pd.DataFrame({
        'column1': [1.0, 0.5, 2.5] * 10,
        'column2': ['a', 'b', 'c'] * 10,
        'column3': ['d', 'e', 'f'] * 10
    })

    model = CTGAN(epochs=1)
    model.fit(data)
    conditions = [Condition({'column2': 'b', 'column3': 'f'}, num_rows=5)]
    samples = model.sample_conditions(conditions=conditions)
    assert list(samples.column2) == ['b'] * 5
    assert list(samples.column3) == ['f'] * 5
Exemplo n.º 3
0
def test_conditional_sampling_numerical():
    data = pd.DataFrame({
        'column1': [1.0, 0.5, 2.5] * 10,
        'column2': ['a', 'b', 'c'] * 10,
        'column3': ['d', 'e', 'f'] * 10
    })

    model = CTGAN(epochs=1)
    model.fit(data)
    conditions = [Condition({
        'column1': 1.0,
    }, num_rows=5)]
    sampled = model.sample_conditions(conditions=conditions)

    assert list(sampled.column1) == [1.0] * 5