Exemplo n.º 1
0
    def outtestIndexes(self):
        '''
        now with some indexes...
        this should contain
        (3 choose 0) + (3 choose 1) + (3 choose 2) + (3 choose 3) = 8leaf nodes,
        and 17 nodes in total
        '''
        LOG.info("\n\n === BBSearch Simple Test - 3 indexes === \n")

        dc = designcandidates.DesignCandidates()
        dc.addCollection("col1", [], [], [])
        dc.addCollection("col2", [("key1",), ("key1", "key2"), ("key1", "key3")], [], [])
        #same as above, just 4 time more leaf nodes, since c1 can be sharded on k1..3,None
        bb = bbsearch.BBSearch(dc, self.costmodel, self.initialDesign, self.upper_bound, self.timeout)
        bb.solve()
        nodeList = bb.listAllNodes()

        self.assertEqual(bb.totalNodes, len(nodeList))
        self.assertEqual(bb.totalNodes, 17)
        self.assertEqual(bb.leafNodes, 8)
        self.assertTrue(checkIndexKeyExist(nodeList, ([])))
        self.assertTrue(checkIndexKeyExist(nodeList, [("key1",)] ))
        self.assertTrue(checkIndexKeyExist(nodeList, [("key1", "key2")] ))
        self.assertTrue(checkIndexKeyExist(nodeList, [("key1", "key3")] ))
        self.assertTrue(checkIndexKeyExist(nodeList, [("key1",), ("key1", "key2")] ))
        self.assertTrue(checkIndexKeyExist(nodeList, [("key1",), ("key1", "key3")] ))
        self.assertTrue(checkIndexKeyExist(nodeList, [("key1", "key2"), ("key1", "key3")] ))
        self.assertTrue(checkIndexKeyExist(nodeList, [("key1",), ("key1", "key2"), ("key1", "key3")] ))
Exemplo n.º 2
0
    def outtestMoreShardingKeys1(self):
        '''
        this should contain
        (3 choose 0) + (3 choose 1) + (3 choose 2) + (3 choose 3) = 8leaf nodes,
        and 8*2 + 1 nodes in total
        '''
        LOG.info("\n\n === BBSearch Simple Test -  more shard keys === \n")

        dc = designcandidates.DesignCandidates()
        dc.addCollection("col1", [], [], [])
        dc.addCollection("col2", [], ["key1", "key2", "key3"], [])
        #same as above, just 4 time more leaf nodes, since c1 can be sharded on k1..3,None
        bb = bbsearch.BBSearch(dc, self.costmodel, self.initialDesign, self.upper_bound, self.timeout)
        bb.solve()
        nodeList = bb.listAllNodes()
        #for n in nodeList:
        #    print n
        self.assertEqual(bb.totalNodes, len(nodeList))
        self.assertEqual(bb.totalNodes, 17)
        self.assertEqual(bb.leafNodes, 8)
        self.assertTrue(checkShardKeyExist(nodeList, ([])))
        self.assertTrue(checkShardKeyExist(nodeList, ("key1",)))
        self.assertTrue(checkShardKeyExist(nodeList, ("key2",)))
        self.assertTrue(checkShardKeyExist(nodeList, ("key3",)))
        self.assertTrue(checkShardKeyExist(nodeList, ("key1", "key2")))
        self.assertTrue(checkShardKeyExist(nodeList, ("key1", "key3")))
        self.assertTrue(checkShardKeyExist(nodeList, ("key2", "key3")))
        self.assertTrue(checkShardKeyExist(nodeList, ("key1", "key2", "key3")))
Exemplo n.º 3
0
def testBBSearch_timeoutTest():
    print("\n\n === BBSerch Timeout Test === \n")

    # cost function takes 1 sec... therefore, there should be about 10 nodes after 10 sec
    def slow_bounding_f(design):
        time.sleep(1)
        return 0

    initialDesign = design.Design()
    upper_bound = 1
    timeout = 5
    costmodel = DummyCostModel(slow_bounding_f)

    dc = designcandidate.DesignCandidate()
    dc.addCollection("col1", [], ["key1", "key2", "key3"], [])
    dc.addCollection("col2", [], ["field1", "field2"], [])
    bb = bbsearch.BBSearch(dc, costmodel, initialDesign, upper_bound, timeout)
    bb.solve()
    nodeList = bb.listAllNodes()
Exemplo n.º 4
0
    def outtestMoreShardingKeys2(self):
        '''
        this should contain
        (5 choose 0) + (5 choose 1) + (5 choose 2) + (5 choose 3) = 26 leaf nodes,
        and 26*2 + 1 = 53 nodes in total
        '''
        LOG.info("\n\n === BBSearch Simple Test -  even more shard keys === \n")

        dc = designcandidates.DesignCandidates()
        dc.addCollection("col1", [], [], [])
        dc.addCollection("col2", [], ["key1", "key2", "key3", "key4", "key5"], [])
        #same as above, just 4 time more leaf nodes, since c1 can be sharded on k1..3,None
        bb = bbsearch.BBSearch(dc, self.costmodel, self.initialDesign, self.upper_bound, self.timeout)
        bb.solve()
        nodeList = bb.listAllNodes()

        self.assertEqual(bb.totalNodes, len(nodeList))
        self.assertEqual(bb.totalNodes, 53)
        self.assertEqual(bb.leafNodes, 26)
Exemplo n.º 5
0
    def outtestSimpleSearch(self):
        '''
        dummy example: since the bounding function returns always float('inf'),
        this should basically traverse the entire tree
        --> this test verifies that bbsearch does not omit any nodes
        '''
        LOG.info("\n\n === BBSearch Simple Test - empty === \n")

        dc = designcandidates.DesignCandidates()
        dc.addCollection("col1", [], [], [])
        dc.addCollection("col2", [], [], [])
        LOG.info("Design Candidates\n%s", dc)
        LOG.info("Initial Design\n%s", self.initialDesign)
        bb = bbsearch.BBSearch(dc, self.costmodel, self.initialDesign, self.upper_bound, self.timeout)
        bb.solve()
        nodeList = bb.listAllNodes()

        self.assertEqual(bb.totalNodes, len(nodeList))
        self.assertEqual(bb.totalNodes, 3)
        self.assertEqual(bb.leafNodes, 1)
Exemplo n.º 6
0
    def outtestDenormalization(self):
        '''
        now with some denorm...
        3 leaf nodes: no denorm, col1->col2, col2->col1
        '''
        LOG.info("\n\n === BBSearch Simple Test - denorm === \n")

        dc = designcandidates.DesignCandidates()
        dc.addCollection("col1", [], [], ["col2"])
        dc.addCollection("col2", [], [], ["col1"])
        #same as above, just 4 time more leaf nodes, since c1 can be sharded on k1..3,None
        bb = bbsearch.BBSearch(dc, self.costmodel, self.initialDesign, self.upper_bound, self.timeout)
        bb.solve()
        nodeList = bb.listAllNodes()
        for n in nodeList:
            print n
            print "*"*50
        self.assertEqual(bb.totalNodes, len(nodeList))
        self.assertEqual(6, bb.totalNodes)
        self.assertEqual(3, bb.leafNodes)
Exemplo n.º 7
0
    def outtestShardingKeys(self):
        '''
        now the some with shard keys...
        this should contain 4 leaf nodes, 9 nodes in total
        shard key ([]), ("key1"), ("key2"), ("key1", "key2")
        '''
        LOG.info("\n\n === BBSearch Simple Test - shard keys === \n")

        dc = designcandidates.DesignCandidates()
        dc.addCollection("col1", [], [], [])
        dc.addCollection("col2", [], ["key1", "key2"], [])
        #same as above, just 4 time more leaf nodes, since c1 can be sharded on k1..3,None
        bb = bbsearch.BBSearch(dc, self.costmodel, self.initialDesign, self.upper_bound, self.timeout)
        bb.solve()
        nodeList = bb.listAllNodes()
        #for n in nodeList:
        #    print n
        self.assertEqual(bb.totalNodes, len(nodeList))
        self.assertEqual(bb.totalNodes, 9)
        self.assertEqual(bb.leafNodes, 4)
        self.assertTrue(checkShardKeyExist(nodeList, ([])))
        self.assertTrue(checkShardKeyExist(nodeList, ("key1",)))
        self.assertTrue(checkShardKeyExist(nodeList, ("key2",)))
        self.assertTrue(checkShardKeyExist(nodeList, ("key1", "key2")))
Exemplo n.º 8
0
    def run(self):
        """
            main public method. Simply call to get the optimal solution
        """
        col_generator = LNSDesigner.RandomCollectionGenerator(self.collections)

        worker_used_time = 0  # This is used to record how long this worker has been running
        elapsedTime = 0  # this is used to check if this worker has found a better design for a limited time: patient time
        relaxRatio = self.init_relaxRatio
        bbsearch_time_out = self.init_bbsearch_time
        bestCost = self.init_bestCost
        bestDesign = self.init_bestDesign.copy()

        while True:
            relaxedCollectionsNames, relaxedDesign = self.__relax__(
                col_generator, bestDesign, relaxRatio)
            sendMessage(
                MSG_SEARCH_INFO,
                (relaxedCollectionsNames, bbsearch_time_out, relaxedDesign,
                 worker_used_time, elapsedTime, self.worker_id), self.channel)

            dc = self.designCandidates.getCandidates(relaxedCollectionsNames)
            self.bbsearch_method = bbsearch.BBSearch(dc, self.costModel,
                                                     relaxedDesign, bestCost,
                                                     bbsearch_time_out,
                                                     self.channel,
                                                     self.bestLock)
            self.bbsearch_method.solve()

            worker_used_time += self.bbsearch_method.usedTime

            if self.bbsearch_method.status != "updated_design":
                if self.bbsearch_method.bestCost < bestCost:
                    bestCost = self.bbsearch_method.bestCost
                    bestDesign = self.bbsearch_method.bestDesign.copy()
                    elapsedTime = 0
                else:
                    elapsedTime += self.bbsearch_method.usedTime

                if self.isExhaustedSearch:
                    elapsedTime = INIFITY

                if elapsedTime >= self.patient_time:
                    # if it haven't found a better design for one hour, give up
                    LOG.info(
                        "Haven't found a better design for %s minutes. QUIT",
                        elapsedTime)
                    break

                relaxRatio += self.ratio_step
                if relaxRatio > self.max_ratio:
                    relaxRatio = self.max_ratio

                self.timeout -= self.bbsearch_method.usedTime
                bbsearch_time_out += self.ratio_step / 0.1 * 30

                if self.timeout <= 0:
                    break
            ## IF
            else:
                if self.bbsearch_method.bestCost < bestCost:
                    bestCost = self.bbsearch_method.bestCost
                    bestDesign = self.bbsearch_method.bestDesign.copy()
                ## IF
            ## ELSE
        ## WHILE
        sendMessage(MSG_EXECUTE_COMPLETED, self.worker_id, self.channel)
Exemplo n.º 9
0
def testBBSearch1():
    def dummy_bounding_f(design):
        return (0)

    initialDesign = design.Design()
    upper_bound = 1
    timeout = 1000000000
    costmodel = DummyCostModel(dummy_bounding_f)
    '''
    dummy example: since the bounding function returns always float('inf'),
    this should basically traverse the entire tree
    --> this test verifies that bbsearch does not omit any nodes
    '''
    print("\n\n === BBSearch Simple Test - empty === \n")
    dc = designcandidate.DesignCandidate()
    dc.addCollection("col1", [], [], [])
    dc.addCollection("col2", [], [], [])
    bb = bbsearch.BBSearch(dc, costmodel, initialDesign, upper_bound, timeout)
    bb.solve()
    nodeList = bb.listAllNodes()
    '''
    now the some with shard keys...
    '''
    print("\n\n === BBSearch Simple Test - shard keys === \n")
    dc = designcandidate.DesignCandidate()
    dc.addCollection("col1", [], [], [])
    dc.addCollection("col2", [], ["key1", "key2"], [])
    #same as above, just 4 time more leaf nodes, since c1 can be sharded on k1..3,None
    bb = bbsearch.BBSearch(dc, costmodel, initialDesign, upper_bound, timeout)
    bb.solve()
    nodeList = bb.listAllNodes()

    print("\n\n === BBSearch Simple Test -  more shard keys === \n")
    dc = designcandidate.DesignCandidate()
    dc.addCollection("col1", [], ["f1", "f2"], [])
    dc.addCollection("col2", [], ["key2", "key3"], [])
    #same as above, just 4 time more leaf nodes, since c1 can be sharded on k1..3,None
    bb = bbsearch.BBSearch(dc, costmodel, initialDesign, upper_bound, timeout)
    bb.solve()
    nodeList = bb.listAllNodes()
    '''
    now with some indexes...
    '''
    print("\n\n === BBSearch Simple Test - indexes === \n")
    dc = designcandidate.DesignCandidate()
    dc.addCollection("col1", [], [], [])
    dc.addCollection("col2", [("key1"), ("key1", "key2"), ("key1", "key3")],
                     [], [])
    #same as above, just 4 time more leaf nodes, since c1 can be sharded on k1..3,None
    bb = bbsearch.BBSearch(dc, costmodel, initialDesign, upper_bound, timeout)
    bb.solve()
    nodeList = bb.listAllNodes()
    '''
    now with some denorm...
    '''
    print("\n\n === BBSearch Simple Test - denorm === \n")
    dc = designcandidate.DesignCandidate()
    dc.addCollection("col1", [], [], ["col2"])
    dc.addCollection("col2", [], [], ["col1"])
    #same as above, just 4 time more leaf nodes, since c1 can be sharded on k1..3,None
    bb = bbsearch.BBSearch(dc, costmodel, initialDesign, upper_bound, timeout)
    bb.solve()
    nodeList = bb.listAllNodes()