Exemplo n.º 1
0
    def test_circle_rdd(self):
        spatial_rdd = PointRDD(self.sc, input_location, offset, splitter, True,
                               num_partitions, StorageLevel.MEMORY_ONLY)

        circle_rdd = CircleRDD(spatial_rdd, 0.5)

        circle_rdd.analyze()

        assert circle_rdd.approximateTotalCount == 3000

        assert circle_rdd.rawSpatialRDD.take(1)[0].getUserData(
        ) == "testattribute0\ttestattribute1\ttestattribute2"
        assert circle_rdd.rawSpatialRDD.take(1)[0].geom.radius == 0.5
Exemplo n.º 2
0
    def test_distance_join_query(self):
        object_rdd = PointRDD(
            self.sc, point_rdd_input_location, point_rdd_offset, point_rdd_splitter, True, StorageLevel.MEMORY_ONLY)
        query_window_rdd = CircleRDD(object_rdd, 0.1)

        object_rdd.spatialPartitioning(GridType.QUADTREE)
        query_window_rdd.spatialPartitioning(object_rdd.getPartitioner())

        object_rdd.spatialPartitionedRDD.persist(StorageLevel.MEMORY_ONLY)
        assert object_rdd.spatialPartitionedRDD.is_cached

        query_window_rdd.spatialPartitionedRDD.persist(StorageLevel.MEMORY_ONLY)

        for _ in range(each_query_loop_times):
            result_size = JoinQuery.DistanceJoinQuery(object_rdd, query_window_rdd, False, True).count()
Exemplo n.º 3
0
    def test_distance_join_query(self):
        object_rdd = PointRDD(sparkContext=self.sc,
                              InputLocation=point_rdd_input_location,
                              Offset=point_rdd_offset,
                              splitter=point_rdd_splitter,
                              carryInputData=False)
        query_window_rdd = CircleRDD(object_rdd, 0.1)
        object_rdd.analyze()
        object_rdd.spatialPartitioning(GridType.QUADTREE)
        query_window_rdd.spatialPartitioning(object_rdd.getPartitioner())

        for i in range(each_query_loop_times):
            result_size = JoinQuery.DistanceJoinQuery(object_rdd,
                                                      query_window_rdd, False,
                                                      True).count()
Exemplo n.º 4
0
    def test_distance_join_result_to_dataframe(self):
        point_csv_df = self.spark.\
            read.\
            format("csv").\
            option("delimiter", ",").\
            option("header", "false").load(
                area_lm_point_input_location
        )
        point_csv_df.createOrReplaceTempView("pointtable")
        point_df = self.spark.sql(
            "select ST_Point(cast(pointtable._c0 as Decimal(24,20)),cast(pointtable._c1 as Decimal(24,20))) as arealandmark from pointtable"
        )

        point_rdd = Adapter.toSpatialRdd(point_df, "arealandmark")
        point_rdd.analyze()

        polygon_wkt_df = self.spark.read.\
            format("csv").\
            option("delimiter", "\t").\
            option("header", "false").load(
                mixed_wkt_geometry_input_location
        )

        polygon_wkt_df.createOrReplaceTempView("polygontable")
        polygon_df = self.spark.\
            sql("select ST_GeomFromWKT(polygontable._c0) as usacounty from polygontable")

        polygon_rdd = Adapter.toSpatialRdd(polygon_df, "usacounty")
        polygon_rdd.analyze()
        circle_rdd = CircleRDD(polygon_rdd, 0.2)

        point_rdd.spatialPartitioning(GridType.QUADTREE)
        circle_rdd.spatialPartitioning(point_rdd.getPartitioner())

        point_rdd.buildIndex(IndexType.QUADTREE, True)

        join_result_pair_rdd = JoinQuery.\
            DistanceJoinQueryFlat(point_rdd, circle_rdd, True, True)

        join_result_df = Adapter.toDf(join_result_pair_rdd, self.spark)
        join_result_df.printSchema()
        join_result_df.show()
    def test_polygon_distance_join_with_crs_transformation(self):
        query_rdd = PolygonRDD(self.sc, input_location_query_polygon, splitter,
                               True, num_partitions, StorageLevel.MEMORY_ONLY,
                               "epsg:4326", "epsg:3857")
        window_rdd = CircleRDD(query_rdd, 0.1)

        object_rdd = PolygonRDD(self.sc, input_location_query_polygon,
                                splitter, True, num_partitions,
                                StorageLevel.MEMORY_ONLY, "epsg:4326",
                                "epsg:3857")

        object_rdd.rawJvmSpatialRDD.jsrdd.repartition(4)
        object_rdd.spatialPartitioning(GridType.KDBTREE)
        object_rdd.buildIndex(IndexType.RTREE, True)
        window_rdd.spatialPartitioning(object_rdd.getPartitioner())

        results = JoinQuery.DistanceJoinQuery(object_rdd, window_rdd, True,
                                              False).collect()
        assert 5467 == results.__len__()

        for data in results:
            for polygon_data in data[1]:
                assert Circle(data[0].geom, 0.1).covers(polygon_data.geom)
Exemplo n.º 6
0
    def test_outside_polygon_distance_join_correctness(self):
        center_geometry_rdd = PolygonRDD(
            self.sc.parallelize(self.test_polygon_window_set),
            StorageLevel.MEMORY_ONLY)
        window_rdd = CircleRDD(center_geometry_rdd, 0.1)
        object_rdd = PolygonRDD(
            self.sc.parallelize(self.test_outside_polygon_set),
            StorageLevel.MEMORY_ONLY)
        self.prepare_rdd(object_rdd, window_rdd, GridType.QUADTREE)

        result = JoinQuery.DistanceJoinQuery(object_rdd, window_rdd, True,
                                             True).collect()
        assert 0 == result.__len__()

        result_no_index = JoinQuery.DistanceJoinQuery(object_rdd, window_rdd,
                                                      False, True).collect()
        assert 0 == result_no_index.__len__()
    def test_distance_join_query_flat_to_df(self):
        poi_point_rdd = WktReader.readToGeometryRDD(self.sc, bank_csv_path, 1, False, False)
        circle_rdd = CircleRDD(poi_point_rdd, 2.0)

        circle_rdd.analyze()
        poi_point_rdd.analyze()

        poi_point_rdd.spatialPartitioning(GridType.QUADTREE)
        circle_rdd.spatialPartitioning(poi_point_rdd.getPartitioner())

        jvm_sedona_rdd = JoinQueryRaw.DistanceJoinQueryFlat(poi_point_rdd, circle_rdd, False, True)

        assert jvm_sedona_rdd.to_rdd().collect().__len__() == 10
Exemplo n.º 8
0
    def test_indexed_rdd_assignment(self):
        object_rdd = PointRDD(
            self.sc, point_rdd_input_location, point_rdd_offset, point_rdd_splitter, True)
        query_window_rdd = CircleRDD(object_rdd, 0.1)
        object_rdd.analyze()
        object_rdd.spatialPartitioning(GridType.QUADTREE)
        object_rdd.buildIndex(IndexType.QUADTREE, True)

        query_window_rdd.spatialPartitioning(object_rdd.getPartitioner())

        object_rdd.buildIndex(IndexType.RTREE, False)

        object_rdd.indexedRDD.persist(StorageLevel.MEMORY_ONLY)
        query_window_rdd.jvmSpatialPartitionedRDD.persist(StorageLevel.MEMORY_ONLY)
        query_window_rdd.jvmSpatialPartitionedRDD.count()
        object_rdd.indexedRDD.count()

        import time

        start = time.time()
        for _ in range(each_query_loop_times):
            result_size = JoinQuery.DistanceJoinQuery(object_rdd, query_window_rdd, True, True).count()
        diff = time.time() - start

        object_rdd = PointRDD(
            self.sc, point_rdd_input_location, point_rdd_offset, point_rdd_splitter, True)
        query_window_rdd = CircleRDD(object_rdd, 0.1)

        object_rdd.analyze()
        object_rdd.spatialPartitioning(GridType.QUADTREE)
        object_rdd.buildIndex(IndexType.QUADTREE, True)

        query_window_rdd.spatialPartitioning(object_rdd.getPartitioner())

        object_rdd.buildIndex(IndexType.RTREE, False)

        start1 = time.time()
        for _ in range(each_query_loop_times):
            result_size = JoinQuery.DistanceJoinQuery(object_rdd, query_window_rdd, True, True).count()
    def test_distance_join_query_flat_to_df(self):
        poi_point_rdd = WktReader.readToGeometryRDD(self.sc, bank_csv_path, 1,
                                                    False, False)
        circle_rdd = CircleRDD(poi_point_rdd, 2.0)

        circle_rdd.analyze()
        poi_point_rdd.analyze()

        poi_point_rdd.spatialPartitioning(GridType.QUADTREE)
        circle_rdd.spatialPartitioning(poi_point_rdd.getPartitioner())

        jvm_sedona_rdd = JoinQueryRaw.DistanceJoinQueryFlat(
            poi_point_rdd, circle_rdd, False, True)
        df_sedona_rdd = Adapter.toDf(jvm_sedona_rdd,
                                     ["poi_from_id", "poi_from_name"],
                                     ["poi_to_id", "poi_to_name"], self.spark)

        assert df_sedona_rdd.count() == 10
        assert df_sedona_rdd.columns == [
            "leftgeometry", "poi_from_id", "poi_from_name", "rightgeometry",
            "poi_to_id", "poi_to_name"
        ]