Exemplo n.º 1
0
    def calc_combined_production(self, day, times_total, prod_total_by_type):
        days = get_period_days(day)
        prod_total = {}
        for ptotal in prod_total_by_type.values():
            prod_total = sum_keys(prod_total, ptotal)

        for period in ['day', 'week', 'month', 'proj']:
            # calculate weighted sum of tcf and ctm
            tcf = 0
            ctm = 0
            for ptotal in prod_total_by_type.values():
                tcf += ptotal[f'{period}_tcf'] * ptotal[f'{period}_total']
                ctm += ptotal[f'{period}_ctm'] * ptotal[f'{period}_total']
            prod_total[f'{period}_tcf'] = (tcf / prod_total[f'{period}_total']
                                           if prod_total[f'{period}_total'] > 0
                                           else np.nan)
            prod_total[f'{period}_ctm'] = (round(ctm /
                                                 prod_total[f'{period}_total'])
                                           if prod_total[f'{period}_total'] > 0
                                           else np.nan)

            prod_total[f'{period}_appctm'] = calc_ratio(
                prod_total[f'{period}_total'], prod_total[f'{period}_ctm'])
            prod_total[f'{period}_avg'] = int(prod_total[f'{period}_total'] /
                                              days[period])
            prod_total[f'{period}_rate'] = self.calc_rate(
                day, CTM_METHOD, prod_total[f'{period}_appctm'],
                times_total[f'{period}_total_time'],
                times_total[f'{period}_standby'])
            prod_total[f'{period}_perc_skips'] = calc_ratio(
                prod_total[f'{period}_skips'], prod_total[f'{period}_total'])

        return prod_total
Exemplo n.º 2
0
    def month_receiver_total(daily, receivertype):
        if daily:
            rcvr_query = ReceiverProduction.objects.filter(
                Q(daily__production_date__year=daily.production_date.year)
                & Q(daily__production_date__month=daily.production_date.month)
                &
                Q(daily__production_date__day__lte=daily.production_date.day),
                receivertype=receivertype,
            )

        else:
            rcvr_query = None

        if not rcvr_query:
            m_rcvr = {f'month_{key}': 0 for key in receiver_prod_schema}
            return m_rcvr

        m_rcvr = {
            f'month_{key}':
            sum(nan_array([val[key] for val in rcvr_query.values()]))
            for key in receiver_prod_schema[0:7]
        }
        m_rcvr['month_qc_field'] = nan_avg_array(
            [val['qc_field'] for val in rcvr_query.values()])
        m_rcvr['month_qc_teams'] = nan_avg_array(
            [val['qc_teams'] for val in rcvr_query.values()])
        m_rcvr['month_fc_teams'] = nan_avg_array(
            [val['fc_teams'] for val in rcvr_query.values()])
        m_rcvr['month_bc_teams'] = nan_avg_array(
            [val['bc_teams'] for val in rcvr_query.values()])

        m_rcvr['month_perc_node_skips'] = calc_ratio(
            m_rcvr['month_node_skips'], daily.project.planned_receivers)

        return m_rcvr
Exemplo n.º 3
0
    def week_receiver_total(daily, receivertype):
        if daily:
            end_date = daily.production_date
            start_date = end_date - timedelta(days=WEEKDAYS - 1)
            rcvr_query = ReceiverProduction.objects.filter(
                Q(daily__production_date__gte=start_date),
                Q(daily__production_date__lte=end_date),
                receivertype=receivertype,
            )
        else:
            rcvr_query = None

        if not rcvr_query:
            w_rcvr = {f'week_{key}': 0 for key in receiver_prod_schema}
            return w_rcvr

        w_rcvr = {
            f'week_{key}':
            sum(nan_array([val[key] for val in rcvr_query.values()]))
            for key in receiver_prod_schema[0:7]
        }
        w_rcvr['week_qc_field'] = nan_avg_array(
            [val['qc_field'] for val in rcvr_query.values()])
        w_rcvr['week_qc_teams'] = nan_avg_array(
            [val['qc_teams'] for val in rcvr_query.values()])
        w_rcvr['week_fc_teams'] = nan_avg_array(
            [val['fc_teams'] for val in rcvr_query.values()])
        w_rcvr['week_bc_teams'] = nan_avg_array(
            [val['bc_teams'] for val in rcvr_query.values()])

        w_rcvr['week_perc_node_skips'] = calc_ratio(
            w_rcvr['week_node_skips'], daily.project.planned_receivers)

        return w_rcvr
Exemplo n.º 4
0
    def calc_ctm_series(self, p_series, sourcetype):
        terrain_series = list(
            zip(*[
                val for key, val in p_series.items() if key != 'skips_series'
            ]))
        p_series['tcf_series'] = []
        p_series['total_sp_series'] = []
        p_series['ctm_series'] = []
        p_series['appctm_series'] = []
        p_series['rate_series'] = []

        for terrain_sp in terrain_series:
            sp_total = np.nansum(terrain_sp)
            p_series['total_sp_series'].append(sp_total)
            if sp_total > 0:
                p_series['tcf_series'].append(
                    terrain_sp[0] / sp_total * TCF_table['sp_t1'] +
                    terrain_sp[1] / sp_total * TCF_table['sp_t2'] +
                    terrain_sp[2] / sp_total * TCF_table['sp_t3'] +
                    terrain_sp[3] / sp_total * TCF_table['sp_t4'] +
                    terrain_sp[4] / sp_total * TCF_table['sp_t5'])

            else:
                p_series['tcf_series'].append(np.nan)

        for tcf, total in zip(p_series['tcf_series'],
                              p_series['total_sp_series']):
            ctm = self.calc_ctm(sourcetype, tcf)
            appctm = calc_ratio(total, ctm)
            p_series['ctm_series'].append(ctm)
            p_series['appctm_series'].append(appctm)
            p_series['rate_series'].append(np.nan)

        return p_series
Exemplo n.º 5
0
    def calc_period_totals(self, day, stype, times_total, prod_total):
        days = get_period_days(day)
        for period in ['day', 'week', 'month', 'proj']:
            prod_total[f'{period}_tcf'] = self.calc_tcf(period, prod_total)
            prod_total[f'{period}_ctm'] = self.calc_ctm(
                stype, prod_total[f'{period}_tcf']) * days[period]
            prod_total[f'{period}_appctm'] = calc_ratio(
                prod_total[f'{period}_total'], prod_total[f'{period}_ctm'])
            prod_total[f'{period}_avg'] = int(prod_total[f'{period}_total'] /
                                              days[period])
            prod_total[f'{period}_rate'] = self.calc_rate(
                day, CTM_METHOD, prod_total[f'{period}_appctm'],
                times_total[f'{period}_total_time'],
                times_total[f'{period}_standby'])
            prod_total[f'{period}_perc_skips'] = calc_ratio(
                prod_total[f'{period}_skips'], prod_total[f'{period}_total'])

        return prod_total
Exemplo n.º 6
0
    def calc_combined_series(self, day, times_total, prod_series_by_type):

        prod_series = {}
        for pseries in prod_series_by_type.values():
            prod_series = sum_keys(prod_series, pseries)
        ps_length = len(prod_series['total_sp_series'])

        ctm_series = np.zeros(ps_length)
        tcf_series = np.zeros(ps_length)
        totals = np.array(prod_series['total_sp_series'])
        for pseries in prod_series_by_type.values():
            ctm = np.array(pseries['ctm_series'])
            app = np.array(pseries['total_sp_series'])
            tcf = np.array(pseries['tcf_series'])

            weights = np.array(
                [v1 / v2 if v2 > 0 else 0 for v1, v2 in zip(app, totals)])
            ctm_series = ctm_series + ctm * weights
            tcf_series = tcf_series + tcf * weights

        prod_series['ctm_series'] = ctm_series
        prod_series['tcf_series'] = tcf_series
        prod_series['appctm_series'] = np.array([
            calc_ratio(v1, v2) if v2 > 0 else np.nan
            for v1, v2 in zip(totals, ctm_series)
        ])

        rate_series = []
        for appctm, total_time, standby in zip(
                prod_series['appctm_series'],
                self.time_series['total_time_series'],
                self.time_series['standby_series']):
            rate_series.append(
                self.calc_rate(day, CTM_METHOD, appctm, total_time, standby))
        prod_series['rate_series'] = np.array(rate_series)

        return prod_series
Exemplo n.º 7
0
    def day_receiver_total(daily, receivertype):
        if daily:
            try:
                rcvr = ReceiverProduction.objects.get(
                    daily=daily,
                    receivertype=receivertype,
                )

            except ReceiverProduction.DoesNotExist:
                d_rcvr = {f'day_{key}': 0 for key in receiver_prod_schema}
                return d_rcvr

        else:
            d_rcvr = {f'day_{key}': 0 for key in receiver_prod_schema}
            return d_rcvr

        d_rcvr = {
            f'day_{key}': np.nan_to_num(getattr(rcvr, key))
            for key in receiver_prod_schema
        }
        d_rcvr['day_perc_node_skips'] = calc_ratio(
            d_rcvr['day_node_skips'], daily.project.planned_receivers)

        return d_rcvr
Exemplo n.º 8
0
    def project_receiver_total(daily, receivertype):
        if daily:
            rcvr_query = ReceiverProduction.objects.filter(
                daily__production_date__lte=daily.production_date,
                receivertype=receivertype,
            ).order_by('daily__production_date')

        else:
            rcvr_query = None

        if not rcvr_query:
            p_rcvr = {f'proj_{key}': 0 for key in receiver_prod_schema}
            return p_rcvr, {}

        rcvr_series = {
            f'{key}_series': [val[key] for val in rcvr_query.values()]
            for key in receiver_prod_schema
        }
        p_rcvr = {
            f'proj_{key}':
            sum(nan_array([val[key] for val in rcvr_query.values()]))
            for key in receiver_prod_schema[0:7]
        }
        p_rcvr['proj_qc_field'] = nan_avg_array(
            [val['qc_field'] for val in rcvr_query.values()])
        p_rcvr['proj_qc_teams'] = nan_avg_array(
            [val['qc_teams'] for val in rcvr_query.values()])
        p_rcvr['proj_fc_teams'] = nan_avg_array(
            [val['fc_teams'] for val in rcvr_query.values()])
        p_rcvr['proj_bc_teams'] = nan_avg_array(
            [val['bc_teams'] for val in rcvr_query.values()])

        p_rcvr['proj_perc_node_skips'] = calc_ratio(
            p_rcvr['proj_node_skips'], daily.project.planned_receivers)

        return p_rcvr, rcvr_series