Exemplo n.º 1
0
def run_make_submission(settings, targets_and_pipelines, split_ratio):
    pool = Pool(settings.N_jobs)
    for i, (target, pipeline, feature_masks, classifier, classifier_name) in enumerate(targets_and_pipelines):
        for j, feature_mask in enumerate(feature_masks):
            progress_str = 'T=%d/%d M=%d/%d' % (i+1, len(targets_and_pipelines), j+1, len(feature_masks))
            pool.apply_async(make_submission_predictions, [settings, target, pipeline, classifier, classifier_name],
                {'feature_mask': feature_mask, 'progress_str': progress_str, 'quiet': True})
    pool.close()
    pool.join()

    guesses = ['clip,preictal']
    num_masks = None
    classifier_names = []
    for target, pipeline, feature_masks, classifier, classifier_name in targets_and_pipelines:
        classifier_names.append(classifier_name)
        if num_masks is None:
            num_masks = len(feature_masks)
        else:
            assert num_masks == len(feature_masks)

        test_predictions = []

        for feature_mask in feature_masks:
            data = make_submission_predictions(settings, target, pipeline, classifier, classifier_name, feature_mask=feature_mask)
            test_predictions.append(data.mean_predictions)

        predictions = np.mean(test_predictions, axis=0)
        guesses += make_csv_for_target_predictions(target, predictions)

    output = '\n'.join(guesses)
    write_submission_file(settings, output, 'ensemble n=%d split_ratio=%s' % (num_masks, split_ratio), None, str(classifier_names), targets_and_pipelines)
Exemplo n.º 2
0
def run_make_submission(settings, targets_and_pipelines, split_ratio):
    pool = Pool(settings.N_jobs)
    for i, (target, pipeline, feature_masks, classifier, classifier_name) in enumerate(targets_and_pipelines):
        for j, feature_mask in enumerate(feature_masks):
            progress_str = 'T=%d/%d M=%d/%d' % (i+1, len(targets_and_pipelines), j+1, len(feature_masks))
            pool.apply_async(make_submission_predictions, [settings, target, pipeline, classifier, classifier_name],
                {'feature_mask': feature_mask, 'progress_str': progress_str, 'quiet': True})
    pool.close()
    pool.join()

    guesses = ['clip,preictal']
    num_masks = None
    classifier_names = []
    for target, pipeline, feature_masks, classifier, classifier_name in targets_and_pipelines:
        classifier_names.append(classifier_name)
        if num_masks is None:
            num_masks = len(feature_masks)
        else:
            assert num_masks == len(feature_masks)

        test_predictions = []

        for feature_mask in feature_masks:
            data = make_submission_predictions(settings, target, pipeline, classifier, classifier_name, feature_mask=feature_mask)
            test_predictions.append(data.mean_predictions)

        predictions = np.mean(test_predictions, axis=0)
        guesses += make_csv_for_target_predictions(target, predictions)

    output = '\n'.join(guesses)
    write_submission_file(settings, output, 'ensemble n=%d split_ratio=%s' % (num_masks, split_ratio), None, str(classifier_names), targets_and_pipelines)
Exemplo n.º 3
0
def run_make_submission(settings, targets, classifiers, pipelines):
    print 'Submissions task'
    print 'Targets', ', '.join(targets)
    print 'Pipelines', ', '.join([p.get_name() for p in pipelines])
    print 'Classifiers', ', '.join([c[1] for c in classifiers])

    run_prepare_data_for_submission(settings, targets, pipelines)

    pool = Pool(settings.N_jobs)
    for pipeline in pipelines:
        for classifier, classifier_name in classifiers:
            for target in targets:
                pool.apply_async(
                    make_submission_csv,
                    [settings, target, pipeline, classifier, classifier_name])
    pool.close()
    pool.join()

    use_median_submissions = False

    for pipeline in pipelines:
        for classifier, classifier_name in classifiers:
            guesses_mean = ['clip,preictal']
            guesses_median = ['clip,preictal']
            for target in targets:
                print 'Target %s pipeline %s classifier %s' % (
                    target, pipeline.get_name(), classifier_name)
                predictions_mean, predictions_median = make_submission_csv(
                    settings, target, pipeline, classifier, classifier_name)
                guesses_mean += predictions_mean
                guesses_median += predictions_median

            mean_output = '\n'.join(guesses_mean)
            median_output = '\n'.join(guesses_median)

            out = []
            if use_median_submissions and mean_output != median_output:
                out.append((mean_output, 'mean'))
                out.append((median_output, 'median'))
            else:
                out.append((mean_output, None))

            for guesses, name in out:
                write_submission_file(settings, guesses, name, pipeline,
                                      classifier_name)
Exemplo n.º 4
0
def run_make_submission(settings, targets_and_pipelines, classifier,
                        classifier_name):
    pool = Pool(settings.N_jobs)
    for i, (target, pipeline,
            feature_masks) in enumerate(targets_and_pipelines):
        for j, feature_mask in enumerate(feature_masks):
            progress_str = 'T=%d/%d M=%d/%d' % (
                i + 1, len(targets_and_pipelines), j + 1, len(feature_masks))
            pool.apply_async(
                make_submission_predictions,
                [settings, target, pipeline, classifier, classifier_name], {
                    'feature_mask': feature_mask,
                    'quiet': True,
                    'progress_str': progress_str
                })
    pool.close()
    pool.join()

    guesses = ['clip,preictal']
    for target, pipeline, feature_masks in targets_and_pipelines:
        test_predictions = []

        for feature_mask in feature_masks:
            data = make_submission_predictions(settings,
                                               target,
                                               pipeline,
                                               classifier,
                                               classifier_name,
                                               feature_mask=feature_mask)
            test_predictions.append(data.mean_predictions)

        predictions = np.mean(test_predictions, axis=0)
        guesses += make_csv_for_target_predictions(target, predictions)

    output = '\n'.join(guesses)
    submission_targets_and_pipelines = [
        (target, pipeline, feature_masks, classifier, classifier_name)
        for target, pipeline, feature_masks in targets_and_pipelines
    ]
    write_submission_file(settings, output, None, None, classifier_name,
                          submission_targets_and_pipelines)
Exemplo n.º 5
0
def run_make_submission(settings, targets, classifiers, pipelines):
    print 'Submissions task'
    print 'Targets', ', '.join(targets)
    print 'Pipelines', ', '.join([p.get_name() for p in pipelines])
    print 'Classifiers', ', '.join([c[1] for c in classifiers])

    run_prepare_data_for_submission(settings, targets, pipelines)

    pool = Pool(settings.N_jobs)
    for pipeline in pipelines:
        for classifier, classifier_name in classifiers:
            for target in targets:
                pool.apply_async(make_submission_csv, [settings, target, pipeline, classifier, classifier_name])
    pool.close()
    pool.join()

    use_median_submissions = False

    for pipeline in pipelines:
        for classifier, classifier_name in classifiers:
            guesses_mean = ['clip,preictal']
            guesses_median = ['clip,preictal']
            for target in targets:
                print 'Target %s pipeline %s classifier %s' % (target, pipeline.get_name(), classifier_name)
                predictions_mean, predictions_median = make_submission_csv(settings, target, pipeline, classifier, classifier_name)
                guesses_mean += predictions_mean
                guesses_median += predictions_median

            mean_output = '\n'.join(guesses_mean)
            median_output = '\n'.join(guesses_median)

            out = []
            if use_median_submissions and mean_output != median_output:
                out.append((mean_output, 'mean'))
                out.append((median_output, 'median'))
            else:
                out.append((mean_output, None))

            for guesses, name in out:
                write_submission_file(settings, guesses, name, pipeline, classifier_name)
Exemplo n.º 6
0
def run_make_submission(settings, targets_and_pipelines, classifier, classifier_name):
    pool = Pool(settings.N_jobs)
    for i, (target, pipeline, feature_masks) in enumerate(targets_and_pipelines):
        for j, feature_mask in enumerate(feature_masks):
            progress_str = 'T=%d/%d M=%d/%d' % (i+1, len(targets_and_pipelines), j+1, len(feature_masks))
            pool.apply_async(make_submission_predictions, [settings, target, pipeline, classifier, classifier_name], {'feature_mask': feature_mask, 'quiet': True, 'progress_str': progress_str})
    pool.close()
    pool.join()

    guesses = ['clip,preictal']
    for target, pipeline, feature_masks in targets_and_pipelines:
        test_predictions = []

        for feature_mask in feature_masks:
            data = make_submission_predictions(settings, target, pipeline, classifier, classifier_name, feature_mask=feature_mask)
            test_predictions.append(data.mean_predictions)

        predictions = np.mean(test_predictions, axis=0)
        guesses += make_csv_for_target_predictions(target, predictions)

    output = '\n'.join(guesses)
    submission_targets_and_pipelines = [(target, pipeline, feature_masks, classifier, classifier_name)
        for target, pipeline, feature_masks in targets_and_pipelines]
    write_submission_file(settings, output, None, None, classifier_name, submission_targets_and_pipelines)