Exemplo n.º 1
0
def test_proto_bin_data():
    user_object = UserObject()
    app = SeldonModelGRPC(user_object)
    bdata = b"123"
    bdata_base64 = base64.b64encode(bdata)
    request = prediction_pb2.SeldonMessage(binData=bdata_base64)
    resp = app.Predict(request, None)
    assert resp.binData == bdata_base64
Exemplo n.º 2
0
def test_proto_bin_data_nparray():
    user_object = UserObject(ret_nparray=True)
    app = SeldonModelGRPC(user_object)
    binData = b"\0\1"
    request = prediction_pb2.SeldonMessage(binData=binData)
    resp = app.Predict(request, None)
    jStr = json_format.MessageToJson(resp)
    j = json.loads(jStr)
    print(j)
    assert j["data"]["tensor"]["values"] == list(user_object.nparray.flatten())
Exemplo n.º 3
0
def test_proto_feedback_custom():
    user_object = UserObjectLowLevel()
    app = SeldonModelGRPC(user_object)
    arr = np.array([1, 2])
    datadef = prediction_pb2.DefaultData(
        tensor=prediction_pb2.Tensor(
            shape=(2, 1),
            values=arr
        )
    )
    request = prediction_pb2.SeldonMessage(data=datadef)
    feedback = prediction_pb2.Feedback(request=request,reward=1.0)
    resp = app.SendFeedback(feedback, None)
Exemplo n.º 4
0
def test_proto_lowlevel():
    user_object = UserObjectLowLevel()
    app = SeldonModelGRPC(user_object)
    arr = np.array([1, 2])
    datadef = prediction_pb2.DefaultData(
        tensor=prediction_pb2.Tensor(
            shape=(2, 1),
            values=arr
        )
    )
    request = prediction_pb2.SeldonMessage(data=datadef)
    resp = app.Predict(request, None)
    jStr = json_format.MessageToJson(resp)
    j = json.loads(jStr)
    print(j)
    assert j["data"]["tensor"]["shape"] == [2, 1]
    assert j["data"]["tensor"]["values"] == [9, 9]
Exemplo n.º 5
0
def test_proto_tftensor_ok():
    user_object = UserObject()
    app = SeldonModelGRPC(user_object)
    arr = np.array([1, 2])
    datadef = prediction_pb2.DefaultData(
        tftensor=tf.make_tensor_proto(arr)
    )
    request = prediction_pb2.SeldonMessage(data=datadef)
    resp = app.Predict(request, None)
    jStr = json_format.MessageToJson(resp)
    j = json.loads(jStr)
    print(j)
    assert j["meta"]["tags"] == {"mytag": 1}
    # add default type
    j["meta"]["metrics"][0]["type"] = "COUNTER"
    assert j["meta"]["metrics"] == user_object.metrics()
    arr2 = tf.make_ndarray(resp.data.tftensor)
    assert np.array_equal(arr, arr2)
Exemplo n.º 6
0
def test_proto_ok():
    user_object = UserObject()
    app = SeldonModelGRPC(user_object)
    arr = np.array([1, 2])
    datadef = prediction_pb2.DefaultData(
        tensor=prediction_pb2.Tensor(
            shape=(2, 1),
            values=arr
        )
    )
    request = prediction_pb2.SeldonMessage(data=datadef)
    resp = app.Predict(request, None)
    jStr = json_format.MessageToJson(resp)
    j = json.loads(jStr)
    print(j)
    assert j["meta"]["tags"] == {"mytag": 1}
    # add default type
    j["meta"]["metrics"][0]["type"] = "COUNTER"
    assert j["meta"]["metrics"] == user_object.metrics()
    assert j["data"]["tensor"]["shape"] == [2, 1]
    assert j["data"]["tensor"]["values"] == [1, 2]
def test_proto_gets_meta():
    user_object = UserObject(ret_meta=True)
    app = SeldonModelGRPC(user_object)
    arr = np.array([1, 2])
    datadef = prediction_pb2.DefaultData(
        tensor=prediction_pb2.Tensor(
            shape=(2, 1),
            values=arr
        )
    )
    meta = prediction_pb2.Meta()
    metaJson = {"puid":"abc"}
    json_format.ParseDict(metaJson, meta)
    request = prediction_pb2.SeldonMessage(data=datadef, meta=meta)
    resp = app.Predict(request, None)
    jStr = json_format.MessageToJson(resp)
    j = json.loads(jStr)
    print(j)
    assert j["meta"]["tags"] == {"inc_meta":{"puid":"abc"}}
    # add default type
    j["meta"]["metrics"][0]["type"] = "COUNTER"
    assert j["meta"]["metrics"] == user_object.metrics()
    assert j["data"]["tensor"]["shape"] == [2, 1]
    assert j["data"]["tensor"]["values"] == [1, 2]