Exemplo n.º 1
0
def test_detectpeak2(filename, node):
    """ Test detectpeak implemented in Python

    Returns
    -------
    status: str
          "OK" or "ERROR"
    """
    data = plot_imu.imu_load(filename)
    datanode = plot_imu.imu_extract(data, node, sensor_type=TYP_SENS)
    timea = np.transpose([datanode['time'], datanode['time'], datanode['time']])
    sens = np.transpose([datanode['X'], datanode['Y'], datanode['Z']])
    print len(timea), len(sens), len(datanode['X'])

    sens_norm = algo.compute_norm(sens)
    sens_filt = algo.moving_average(sens_norm, WINDOW_SIZE)
    #index_peak = algo.search_maxpeak(sens_filt)
    [time_peak, sens_peak] = algo.threshold_under_signal(timea,
                                                   sens_filt, THRESHOLD)
    print "Step numbers=", len(sens_peak)
        
    plt.figure()
    plt.plot(timea[:, 0], sens[:, 0:3])
    plt.title(TYP_SENS + node)
    plt.legend(('x', 'y', 'z'), bbox_to_anchor=(0, 1, 1, 0),
              ncol=2, loc=3, borderaxespad=0.)

    plt.figure()
    plt.title("Peak detection " + node)
    plt.plot(timea[:, 0], sens_norm)
    plt.plot(timea[:, 0], sens_filt)
    plt.plot(time_peak, sens_peak, "o")

   
    return "OK"
Exemplo n.º 2
0
def test3():
    """ Test3
    """
    from sensbiotk.io import iofox_deprec as fox
    import pylab as py

    print "Test Calibration"
    [_, acc, _, _] = fox.load_foximu_csvfile(FILETEST)

    norm_acc = algo.compute_norm(acc)

    py.plot(norm_acc)
    py.show()

    return
Exemplo n.º 3
0
def test_pedometer():
    """ Test pedometer implemented in Python

    Returns
    -------
    status: str
          "OK" or "ERROR"
    """

    from sensbiotk.io import iofox
    from sensbiotk.algorithms import basic as algo
    import pylab as py

    [timea, acc] = iofox.load_foxacc_csvfile("./data/walk1_acc.csv")
    [timea, acc] = algo.cut_signal(timea, acc, 12.0, 29.0)
    acc_norm = algo.compute_norm(acc)
    #acc_filt = algo.lowpass_filter(acc_norm, 2.0, 100.0)
    #acc_filt = algo.lowpass_filter2(acc_norm, 2.0, 200.0)
    acc_filt = algo.moving_average(acc_norm, 30)
    #acc_filt = algo.moving_average2(acc_norm, 50)
    index_peak = algo.search_maxpeak(acc_filt)
    [time_peak, acc_peak] = algo.threshold_signal(timea[index_peak],
                                                  acc_filt[index_peak], 11.0)
    print "Step numbers=", len(acc_peak)

    py.figure()
    py.plot(timea[:, 0], acc[:, 0:3])
    py.title("Walking 1 Accelerations")
    py.legend(('x', 'y', 'z'),
              bbox_to_anchor=(0, 1, 1, 0),
              ncol=2,
              loc=3,
              borderaxespad=0.)

    py.figure()
    py.title("Walking 1 Results")
    py.plot(timea[:, 0], acc_norm)
    py.plot(timea[:, 0], acc_filt)
    py.plot(time_peak, acc_peak, "o")

    py.figure()
    py.plot(np.diff(acc_filt))
    py.plot(np.diff(np.sign(np.diff(acc_filt)) < 0))
    py.show()

    return "OK"
Exemplo n.º 4
0
def test_detectpeak(filename, node):
    """ Test detectpeak implemented in Python

    Returns
    -------
    status: str
          "OK" or "ERROR"
    """
    data = plot_imu.imu_load(filename)
    datanode = plot_imu.imu_extract(data, node, sensor_type=TYP_SENS)
    timea = np.transpose(
        [datanode['time'], datanode['time'], datanode['time']])
    sens = np.transpose([datanode['X'], datanode['Y'], datanode['Z']])
    print len(timea), len(sens), len(datanode['X'])

    sens_norm = algo.compute_norm(sens)
    sens_filt = algo.moving_average(sens_norm, WINDOW_SIZE)
    index_peak = algo.search_maxpeak(sens_filt)
    [time_peak,
     sens_peak] = algo.threshold_signal(timea[index_peak],
                                        sens_filt[index_peak], THRESHOLD)
    print "Step numbers=", len(sens_peak)

    plt.figure()
    plt.plot(timea[:, 0], sens[:, 0:3])
    plt.title(TYP_SENS + node)
    plt.legend(('x', 'y', 'z'),
               bbox_to_anchor=(0, 1, 1, 0),
               ncol=2,
               loc=3,
               borderaxespad=0.)

    plt.figure()
    plt.title("Peak detection " + node)
    plt.plot(timea[:, 0], sens_norm)
    plt.plot(timea[:, 0], sens_filt)
    plt.plot(time_peak, sens_peak, "o")

    #plt.figure()
    #plt.plot(np.diff(sens_filt))
    #plt.plot(np.diff(np.sign(np.diff(sens_filt)) < 0))

    return "OK"
Exemplo n.º 5
0
def compute_simple(data):
    """ Compute IMU accelerometer calibration parameters

    Parameters :
    ------------
    data : numpy array of float
           data sensor in motion containing all the acquisition
           on three axis

    Returns
    -------
     offset : numpy array of float (dim=3)
              offset parameter
     scale  : numpy array of float (dim=3)
               scale parameters
    """
    offset = [0, 0, 0]
    norm_acc = algo.compute_norm(data)
    val_scale = scale_fit_norm(norm_acc, 9.81)
    scale = [val_scale, val_scale, val_scale]

    return scale, offset
Exemplo n.º 6
0
def test_freefall():
    """ Test freefall detector implemented in Python

    Returns
    -------
    status: str
          "OK" or "ERROR"
    """

    from sensbiotk.io import iofox
    from sensbiotk.algorithms import basic as algo

    [timea, acc] = iofox.load_foxacc_csvfile("./data/freefall1_acc.csv")
    acc_norm = algo.compute_norm(acc)
    [state_freefall] = threshold_inf(acc_norm, 1.5)
    [state_freefall] = threshold_time(timea[:, 0], state_freefall, 0.1)

    [state_inactive] = search_state(timea[:, 0], acc_norm, 10.0, 5.0)
    [state_inactive] = threshold_time(timea[:, 0], state_inactive, 0.1)

    py.figure()
    py.plot(timea[:, 0], acc[:, 0:3])
    py.title("FreeFall Accelerations")
    py.legend(('x', 'y', 'z'),
              bbox_to_anchor=(0, 1, 1, 0),
              ncol=2,
              loc=3,
              borderaxespad=0.)

    py.figure()
    py.title("FreeFall detection Results (Python)")
    py.plot(acc_norm)
    py.plot(state_freefall)
    py.plot(state_inactive * 5)

    return "OK"