Exemplo n.º 1
0
def Attention():
    # https://github.com/farizrahman4u/seq2seq or https://github.com/datalogue/keras-attention

    import seq2seq
    from seq2seq.models import AttentionSeq2Seq
    
    input_q = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='float64')
    q = embedding()(input_q)
    q = AttentionSeq2Seq(input_dim=EMBEDDING_DIM, input_length=MAX_SEQUENCE_LENGTH,
                         output_length=MAX_SEQUENCE_LENGTH, output_dim=QA_EMBED_SIZE,
                         depth=1)(q)
    q = Flatten()(q)
    q = Dropout(DROPOUT_RATE)(q)

    input_a = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='float64')
    a = embedding()(input_a)
    a = AttentionSeq2Seq(input_dim=EMBEDDING_DIM, input_length=MAX_SEQUENCE_LENGTH,
                         output_length=MAX_SEQUENCE_LENGTH, output_dim=QA_EMBED_SIZE,
                         depth=1)(a)
    a = Flatten()(a)
    a = Dropout(DROPOUT_RATE)(a)

    merged = concatenate([q, a])
    merged = Dense(512)(merged)
    merged = BatchNormalization()(merged)
    merged = Activation('relu')(merged)
    merged = Dropout(DROPOUT_RATE)(merged)
    merged = Dense(1, activation="sigmoid")(merged)

    model = Model([input_q, input_a], [merged])
    return model
Exemplo n.º 2
0
def test_AttentionSeq2Seq():
    x = np.random.random((samples, input_length, input_dim))
    y = np.random.random((samples, output_length, output_dim))

    models = []
    models += [
        AttentionSeq2Seq(output_dim=output_dim,
                         hidden_dim=hidden_dim,
                         output_length=output_length,
                         input_shape=(input_length, input_dim))
    ]
    models += [
        AttentionSeq2Seq(output_dim=output_dim,
                         hidden_dim=hidden_dim,
                         output_length=output_length,
                         input_shape=(input_length, input_dim),
                         depth=2)
    ]
    models += [
        AttentionSeq2Seq(output_dim=output_dim,
                         hidden_dim=hidden_dim,
                         output_length=output_length,
                         input_shape=(input_length, input_dim),
                         depth=3)
    ]

    for model in models:
        model.compile(loss='mse', optimizer='sgd')
        model.fit(x, y, epochs=1)
Exemplo n.º 3
0
 def create_model(self, params=None):
     params_ = AttentionSeq2Seq.default_params().copy()
     params_.update({"source.reverse": True})
     params_.update(params or {})
     return AttentionSeq2Seq(source_vocab_info=self.vocab_info,
                             target_vocab_info=self.vocab_info,
                             params=params_)
Exemplo n.º 4
0
 def create_model(self, mode, params=None):
     params_ = AttentionSeq2Seq.default_params().copy()
     params_.update(TEST_PARAMS)
     params_.update({
         "source.reverse": True,
         "vocab_source": self.vocab_file.name,
         "vocab_target": self.vocab_file.name,
     })
     params_.update(params or {})
     return AttentionSeq2Seq(params=params_, mode=mode)
Exemplo n.º 5
0
 def default_params():
   params = AttentionSeq2Seq.default_params()
   params["discriminator_units"] = 256
   params["discriminator_loss_multiplier"] = 10.0
   params["discriminator_reverse_grad"] = False
   params["discriminator_mix_context"] = False
   return params
Exemplo n.º 6
0
def main():
    encoder_input_data, decoder_input_data, decoder_target_data = get_data()
    encoder_input_data = np.array(
        [convert_chord_indices_to_embeddings(c) for c in encoder_input_data])
    decoder_input_data = to_categorical(decoder_input_data, num_classes=130)
    decoder_target_data = to_categorical(decoder_target_data, num_classes=130)

    # model = AttentionSeq2Seq(input_dim=32, hidden_dim=64, output_length=600, output_dim=130)
    model = AttentionSeq2Seq(input_dim=32,
                             input_length=600,
                             hidden_dim=64,
                             output_length=600,
                             output_dim=130)

    if not os.path.exists('s2s_attention.h5'):
        optimizer = Adam(clipnorm=1.0)
        model.compile(loss='categorical_crossentropy',
                      optimizer=optimizer,
                      metrics=['categorical_accuracy'])
        model.fit(encoder_input_data,
                  decoder_input_data,
                  batch_size=32,
                  epochs=2)
        model.save_weights('s2s_simple.h5')

        res = model.predict(np.expand_dims(encoder_input_data[15], axis=0))
        print(np.argmax(res, axis=-1))

    else:
        model.load_weights("s2s_fariz_attention.h5")
        output = model.predict(np.expand_dims(encoder_input_data[20], axis=0))
        print(np.argmax(output, axis=-1))
Exemplo n.º 7
0
def create_imgText(image_shape, max_caption_len, vocab_size):
    image_model = Sequential()
    # image_shape : C,W,H
    # input: 100x100 images with 3 channels -> (3, 100, 100) tensors.
    # this applies 32 convolution filters of size 3x3 each.
    image_model.add(Convolution2D(32, (3, 3), padding='valid', input_shape=image_shape))
    image_model.add(BatchNormalization())
    image_model.add(Activation('relu'))
    image_model.add(Convolution2D(32, (3, 3)))
    image_model.add(BatchNormalization())
    image_model.add(Activation('relu'))
    image_model.add(MaxPooling2D(pool_size=(2, 2)))
    image_model.add(Dropout(0.25))
    image_model.add(Convolution2D(64, (3, 3), padding='valid'))
    image_model.add(BatchNormalization())
    image_model.add(Activation('relu'))
    image_model.add(Convolution2D(64, (3, 3)))
    image_model.add(BatchNormalization())
    image_model.add(Activation('relu'))
    image_model.add(MaxPooling2D(pool_size=(2, 2)))
    image_model.add(Dropout(0.25))
    image_model.add(Flatten())
    # Note: Keras does automatic shape inference.
    image_model.add(Dense(128))
    image_model.add(RepeatVector(1))
    model = AttentionSeq2Seq(input_dim=128, input_length=1, hidden_dim=128, output_length=max_caption_len,
                             output_dim=vocab_size)
    # model = Seq2Seq(input_dim=128, input_length=1, hidden_dim=128, output_length=max_caption_len,
    #                 output_dim=128, peek=True)
    image_model.add(model)
    image_model.add(TimeDistributed(Dense(vocab_size)))
    image_model.add(Activation('softmax'))
    return image_model
Exemplo n.º 8
0
def create_model(in_encoder_vocabulary,
                 in_decoder_vocabulary,
                 in_embedding_matrix,
                 in_input_length,
                 in_output_length,
                 in_config,
                 mode=Mode.TRAIN):
    effective_vocabulary_size, embedding_size = in_embedding_matrix.shape
    embedding_layer = Embedding(effective_vocabulary_size,
                                embedding_size,
                                weights=[in_embedding_matrix],
                                input_length=in_input_length,
                                trainable=True,
                                name='emb')
    seq2seq_model = AttentionSeq2Seq(bidirectional=False,
                                     input_dim=embedding_size,
                                     output_dim=len(in_decoder_vocabulary),
                                     hidden_dim=in_config['layer_size'],
                                     output_length=in_output_length,
                                     depth=in_config['max_layers'],
                                     dropout=0.0 if mode == Mode.TEST else 0.2)
    model = Sequential()
    model.add(embedding_layer)
    model.add(seq2seq_model)
    model.add(Activation('softmax'))
    sgd = SGD(lr=in_config['learning_rate'],
              decay=in_config['learning_rate_decay'],
              clipvalue=in_config['gradient_clip_value'])
    model.compile(loss='categorical_crossentropy', optimizer=sgd)
    return model
Exemplo n.º 9
0
	def train(self, train_names, train_codes, hyperparams, pct_train=0.8, lr=0.01, num_epoch=100):
		if self.model_name == 'SimpleSeq2Seq' or self.model_name == 'AttentionSeq2Seq':
			train_name, train_code, val_name, val_code, naming_data, hyperparams['n_tokens'] = trainModel.split_data(train_names, train_codes, hyperparams['output_length'], hyperparams['input_length'], pct_train)
			hyperparams['is_embedding'] = False
			train_name = trainModel.one_hot_name(train_name, hyperparams['n_tokens'])
			required_params = ['output_dim', 'output_length', 'input_length', 'is_embedding', 'n_tokens']
			for param in required_params:
				assert param in hyperparams, (param)
			if self.model_name == 'SimpleSeq2Seq':
				model = SimpleSeq2Seq(**hyperparams)
			elif self.model_name == 'AttentionSeq2Seq':
				model = AttentionSeq2Seq(**hyperparams)
			elif self.model_name == 'Seq2Seq':
				model = Seq2Seq(**hyperparams)
			else:
				raise TypeError
			my_adam = optimizers.Adam(lr=lr, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
			model.compile(optimizer=my_adam, loss='categorical_crossentropy')
			print ('fit...')
			model.fit(train_code, train_name, epochs=num_epoch)

		print ('predict...')
		predict_probs = model.predict(val_code)
		predict_idx = np.argmax(predict_probs, axis=2)

		print('evaluate...')
		exact_match, _ = trainModel.exact_match(naming_data, predict_idx, val_name)
		precision, recall, f1, _, _ = trainModel.evaluate_tokens(naming_data, predict_idx, val_name)
		return model, exact_match, precision, recall, f1, naming_data
Exemplo n.º 10
0
def build_model(input_dim, input_length, hidden_dim, output_length, out_dim,
                depth):
    model = AttentionSeq2Seq(input_dim=input_dim,
                             input_length=input_length,
                             hidden_dim=hidden_dim,
                             output_length=output_length,
                             output_dim=out_dim,
                             depth=depth)
    model.compile(loss='logcosh', optimizer='adam', metrics=["mae", "mse"])
    return model
def attention_s2s_lib():
    model = AttentionSeq2Seq(output_dim=output_dim,
                             hidden_dim=hidden_dim,
                             output_length=output_steps,
                             input_shape=(input_steps, input_dim),
                             depth=(encoder_stack, decoder_stack),
                             bidirectional=True)
    sgd = optimizers.SGD(lr=0.0001, decay=1e-6, momentum=0.9, nesterov=False)
    model.compile(loss='mse', optimizer=sgd)
    return model
Exemplo n.º 12
0
 def create_model(self):
     self.model = AttentionSeq2Seq(
         self.output_dim,
         self.output_length,
         input_dim=self.input_dim,
         # input_length=self.input_length,
         # hidden_dim=self.input_length,
         depth=self.depth)
     self.model.compile(loss=self.loss, optimizer=self.optimizer)
     return self.model
Exemplo n.º 13
0
 def create_model(self, mode, params=None):
   params_ = AttentionSeq2Seq.default_params().copy()
   params_.update(TEST_PARAMS)
   params_.update({
       "source.reverse": True,
       "vocab_source": self.vocab_file.name,
       "vocab_target": self.vocab_file.name,
   })
   params_.update(params or {})
   return AttentionSeq2Seq(params=params_, mode=mode)
def attention_seq2seq_model(input_dim, hidden_dim, output_length, output_dim, input_length): 
    model = Sequential()
    model_seq = AttentionSeq2Seq(input_dim=input_dim, hidden_dim=hidden_dim,
                          output_length=output_length, output_dim=output_dim,
                          input_length=input_length)
    model.add(model_seq)
    model.add(TimeDistributed(Dense(output_dim)))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
    #model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
    return model
Exemplo n.º 15
0
def build_model():
    model = AttentionSeq2Seq(input_dim=INPUT_DIM,
                             input_length=INPUT_MAX_LENGTH,
                             hidden_dim=HIDDEN_DIM,
                             output_length=OUTPUT_MAX_LENGTH,
                             output_dim=OUTPUT_DIM,
                             depth=DEPTH,
                             batch_size=BATCH_SIZE)
    model.compile(loss='mse', optimizer='sgd', sample_weight_mode="temporal")
    model.summary()
    return model
Exemplo n.º 16
0
def create_att_model(dic_size):
    model = AttentionSeq2Seq(input_dim=word_size,
                             input_length=encoder_seq_length,
                             hidden_dim=lstm_hidden_dim,
                             output_length=decoder_seq_length,
                             output_dim=word_size)
    f_model = Sequential()
    f_model.add(Embedding(input_dim=dic_size, output_dim=word_size))
    f_model.add(model)
    f_model.add(Dense(dic_size, activation='softmax'))
    f_model.summary()
    return f_model
Exemplo n.º 17
0
def attention_model_recurrent_shop(n_timesteps_in, n_timesteps_out,
                                   n_features):
    model = AttentionSeq2Seq(input_dim=n_features,
                             input_length=n_timesteps_in,
                             hidden_dim=100,
                             output_length=n_timesteps_out,
                             output_dim=n_features,
                             depth=1)
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['acc'])
    return model
Exemplo n.º 18
0
def create_attention_model(X_vocab_len, X_max_len, y_vocab_len, y_max_len, hidden_dim, layer_num, learning_rate, dropout):
    model = Sequential()

    model.add(AttentionSeq2Seq(output_dim=y_vocab_len,
                               hidden_dim=hidden_dim,
                               output_length=y_max_len,
                               input_shape=(X_max_len, X_vocab_len),
                               bidirectional=False,
                               depth=layer_num,
                               dropout=dropout))
    model.add(TimeDistributed(Dense(y_vocab_len, activation='softmax')))
    opt = RMSprop(lr=learning_rate)
    model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
    return model
Exemplo n.º 19
0
def test_model(source_path, target_path, vocab_path):

    tf.logging.set_verbosity(tf.logging.INFO)
    batch_size = 2

    # Build model graph
    mode = tf.contrib.learn.ModeKeys.TRAIN
    params_ = AttentionSeq2Seq.default_params().copy()
    params_.update({
        "vocab_source": vocab_path,
        "vocab_target": vocab_path,
    })
    model = AttentionSeq2Seq(params=params_, mode=mode)

    tf.logging.info(vocab_path)

    input_pipeline_ = input_pipeline.ParallelTextInputPipeline(params={
        "source_files": [source_path],
        "target_files": [target_path]
    },
                                                               mode=mode)
    input_fn = training_utils.create_input_fn(pipeline=input_pipeline_,
                                              batch_size=batch_size)
    features, labels = input_fn()
    fetches = model(features, labels, None)

    fetches = [_ for _ in fetches if _ is not None]

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())
        sess.run(tf.tables_initializer())
        with tf.contrib.slim.queues.QueueRunners(sess):
            fetches_ = sess.run(fetches)

    return model, fetches_
Exemplo n.º 20
0
def create_attention_model(model_filename, params_filename):
    input_token_index,target_token_index,\
      input_characters,target_characters,\
      max_encoder_seq_length,num_encoder_tokens,\
      max_decoder_seq_length,num_decoder_tokens=get_parameters_from_file(params_filename)

    model = AttentionSeq2Seq(input_dim=num_encoder_tokens,
                             input_length=max_encoder_seq_length,
                             hidden_dim=latent_dim,
                             output_length=max_decoder_seq_length,
                             output_dim=num_decoder_tokens,
                             depth=LSTM_LAYERS,
                             dropout=DROPOUT)

    model.compile(loss='mse', optimizer='rmsprop', metrics=['acc'])
    model.save(model_filename)
Exemplo n.º 21
0
 def default_params():
   """call in configurable class, return default params
   """
   params = AttentionSeq2Seq.default_params().copy()
   params.update({
       "pointer_gen": True,
       "coverage": True,
       "embedding.share": True,
       "attention.class": "AttentionLayerBahdanau",
       "attention.params": {}, # Arbitrary attention layer parameters
       "bridge.class": "seq2seq.models.bridges.ZeroBridge",
       "encoder.class": "seq2seq.encoders.BidirectionalRNNEncoder",
       "encoder.params": {},  # Arbitrary parameters for the encoder
       "decoder.class": "seq2seq.decoders.CopyGenDecoder",
       "decoder.params": {}  # Arbitrary parameters for the decoder
   })
   return params
Exemplo n.º 22
0
def create_model():
    model = Sequential()
    # model.add(LSTM(128,input_shape = (5,660), return_sequences = True, activation='tanh'))
    #     model.add(LSTM(512, return_sequences=True, dropout=0.2, activation='tanh'))
    #     model.add(LSTM(256, return_sequences=True, activation='tanh'))
    # model.add(LSTM(128, return_sequences=True, dropout=0.5, activation='tanh'))
    #     model.add(LSTM(64, return_sequences=True, dropout=0.2, activation='tanh'))
    # model.add(LSTM(128, return_sequences=False, activation='tanh'))
    # model.add(GRU(128, input_shape = (5,660),return_sequences=True, activation='relu'))
    # model.add(GRU(128, input_shape = (30,770), return_sequences=True, activation='tanh'))
    # model.add(GRU(256, input_shape = (30,770), return_sequences=False, activation='tanh'))
    #     model.add(GRU(128, input_shape = (6,1246), return_seqences=False, activation='relu'))

    model = AttentionSeq2Seq(input_dim=660,
                             input_length=5 * 3,
                             hidden_dim=64,
                             output_length=1,
                             output_dim=64,
                             depth=(3, 3),
                             bidirectional=False)
    # model.add(Dropout(0.8))

    # model.add(Flatten())
    #     model.add(Dense(128, activation='relu'))
    # model.add(Dense(64, activation='relu'))
    # model.add(Dense(5, activation='softmax'))

    a = model.inputs
    d0 = BatchNormalization()(model.outputs[-1])
    # drop = Dropout(0.5)(d0)
    d1 = Dense(5, activation='tanh')(d0)
    d2 = Dense(5, activation='softmax')(d1)
    model = Model(inputs=a, outputs=d2)

    sgd = SGD(lr=0.000001, decay=1e-8, momentum=0.9, nesterov=True)
    adam = Adam(lr=0.00005, clipnorm=4)
    rmsprop = RMSprop(lr=0.0007, rho=0.9, epsilon=None, decay=0.0)
    model.compile(loss='categorical_crossentropy',
                  optimizer=sgd,
                  metrics=['accuracy'])

    print model.summary()
    return model
Exemplo n.º 23
0
def main_train():
    # x = np.random.random((samples, input_length, input_dim))
    # y = np.random.random((samples, output_length, output_dim))
    checkpoint = ModelCheckpoint('model_best_weights.h5',
                                 monitor='loss',
                                 verbose=1,
                                 save_best_only=True,
                                 mode='min',
                                 period=10)

    model = AttentionSeq2Seq(output_dim=n_dim,
                             hidden_dim=hidden_dim,
                             output_length=output_length,
                             input_shape=(input_length, n_dim),
                             depth=4)
    model.compile(loss='mse', optimizer='sgd')

    model.fit_generator(generator=nasdaq_generator,
                        use_multiprocessing=True,
                        workers=5,
                        epochs=100000,
                        callbacks=[checkpoint])
Exemplo n.º 24
0
    def compile_model(input_length, input_depth, input_dim, hidden_dim,
                      output_length, output_depth, output_dim, peek, attention,
                      loss, optimizer):
        """
        Returns a compiled seq2seq model
        Arguments:
        input_length - Batch size in which to partition the elements
        input_depth - the number of layers in encoder
        input_dim - the number of features for each word
        hidden_dim - number of hidden units
        output_length - (= maximum_output_length) The maximum number of words in output
        output_depth - the number of layers in decoder
        output_dim - the number of features in word embedding's output
        peek - (binray) add the peek feature
        attention - (binary) use attention model
        loss - (string) the loss function, one of keras options
        optimizer - (string) the optimizer function, one of keras options
        """

        # Only pass peek as an argument if using an attention model
        model_fn = lambda **args: \
                   AttentionSeq2Seq(**args) \
                   if attention \
                      else Seq2Seq(peek = peek, **args)

        model = model_fn(
            input_length=input_length,
            input_dim=input_dim,
            hidden_dim=hidden_dim,
            output_length=output_length,
            output_dim=output_dim,
            depth=(input_depth, output_depth),
        )

        model.compile(loss=loss, optimizer=optimizer)

        if logging.getLogger().getEffectiveLevel() == logging.DEBUG:
            model.summary()
        return model
Exemplo n.º 25
0
            vector = vector[len(vector) - length::]
        else:
            for _ in range(length - len(vector)):
                vector.append(model_wv["。"])
    return vector


def vec2line(vector):
    text = ""
    for v in vector:
        text += model_wv.most_similar([v], [], 1)[0][0]
    return text


model = AttentionSeq2Seq(input_dim=200,
                         input_length=20,
                         output_length=20,
                         output_dim=200)
model.compile(loss='mse', optimizer='Adam')
model.load_weights("./data/er.hdf5")


def talk(text):
    vector = np.asarray(line2vec(text, length=20)[::-1])
    vector = vector.reshape(1, 20, 200)
    predict = model.predict(vector, batch_size=132)
    return vec2line(predict.reshape(20, 200))


if __name__ == "__main__":
    while True:
        print(talk(input(">")))
Exemplo n.º 26
0
    def __init__(self,
                 model_name,
                 x_max_len,
                 x_vocab_len,
                 y_max_len,
                 y_vocab_len,
                 hidden_dim,
                 layer_num,
                 learning_rate,
                 dropout,
                 embedding_dim=0):

        self.model_name = model_name

        self.X_max_len = x_max_len
        self.X_vocab_len = x_vocab_len

        self.y_max_len = y_max_len
        self.y_vocab_len = y_vocab_len

        self.embedding_dim = embedding_dim
        self.hidden_dim = hidden_dim
        self.layer_num = layer_num
        self.learning_rate = learning_rate
        self.dropout = dropout

        print('[INFO] Compiling model...')
        self.model = Sequential()
        if self.embedding_dim > 0:
            self.model.add(
                Embedding(input_length=self.X_max_len,
                          input_dim=self.X_vocab_len,
                          output_dim=embedding_dim,
                          mask_zero=True))
            self.model.add(
                AttentionSeq2Seq(input_length=self.X_max_len,
                                 input_dim=embedding_dim,
                                 output_length=self.y_max_len,
                                 output_dim=self.y_vocab_len,
                                 hidden_dim=hidden_dim,
                                 bidirectional=False,
                                 depth=layer_num,
                                 dropout=dropout))

        else:
            self.model.add(
                AttentionSeq2Seq(input_length=self.X_max_len,
                                 input_dim=self.X_vocab_len,
                                 output_length=self.y_max_len,
                                 output_dim=self.y_vocab_len,
                                 hidden_dim=hidden_dim,
                                 bidirectional=True,
                                 depth=layer_num,
                                 dropout=dropout))

        self.model.add(
            TimeDistributed(Dense(units=self.y_vocab_len,
                                  activation='softmax')))
        opt = RMSprop(lr=learning_rate)
        self.model.compile(loss='categorical_crossentropy',
                           optimizer=opt,
                           metrics=['accuracy'])
Exemplo n.º 27
0
# In[15]:

# attention seq2seq
inp = Input((maxlen, ))
x = Embedding(vocab_size,
              dim_en_vec,
              input_length=maxlen,
              weights=[en_embs],
              trainable=False)(inp)

x = AttentionSeq2Seq(input_dim=dim_en_vec,
                     input_length=maxlen,
                     hidden_dim=128,
                     output_length=maxlen,
                     output_dim=128,
                     depth=3,
                     bidirectional=True,
                     unroll=False,
                     stateful=False,
                     dropout=0.1)(x)
x = TimeDistributed(Dense(dim_fr_vec))(x)
x = TimeDistributed(Dense(vocab_size, weights=fr_wgts))(x)
x = Activation('softmax')(x)

# In[16]:

model = Model(inp, x)
model.compile('adam', 'sparse_categorical_crossentropy')

# In[17]:
Exemplo n.º 28
0
 def create_model(self):
     return AttentionSeq2Seq(source_vocab_info=self.vocab_info,
                             target_vocab_info=self.vocab_info,
                             params=AttentionSeq2Seq.default_params())
#  THEANO_FLAGS=mode=FAST_RUN,device=cuda0,floatX=float32 python test.py fold1 fl1 1


fl=sys.argv[1]
print fl
frame_length = int(fl[1])
TIME_STEPS = int(round(308/frame_length)-1)  #308 is the image's max height
NUM = 64
num_dim = 50*frame_length*2


model = Sequential()
model.add(TimeDistributed(Dense(64, activation='relu'), batch_input_shape=(None, TIME_STEPS, num_dim)))
model.add(TimeDistributed(Dense(64, activation='relu')))
model.add(AttentionSeq2Seq(input_dim=64, input_length=TIME_STEPS, hidden_dim=64, output_length=25, output_dim=50, depth=1))
model.add(TimeDistributed(Activation('softmax')))
model.compile(loss='sparse_categorical_crossentropy', optimizer='Adam', metrics=['accuracy'])

print sys.argv[2]
load_weights(model, 'model_%s/epoch_%s.h5'%(fl,sys.argv[2]))
text_lst = "$abcdefghijklmnopqrstuvwxyzABCDEGHIJKLMNOPQRSTUVZ#"


with open('tree', 'rb') as f:
	tree = pickle.load(f)

# find the next possible character 
def search_key(string):
	cur = tree
	string = '$'+string
Exemplo n.º 30
0
def main():
    filename = "data/messages.htm"
    tokenized_pairs, mappings = get_data(filename,
                                         verbose=False,
                                         load_prior=True)
    x, y = pad_pairs(tokenized_pairs, SEQUENCE_LENGTH, trim_under=True)

    input_length = SEQUENCE_LENGTH
    output_length = SEQUENCE_LENGTH
    input_dim = 1
    output_dim = 1

    if LOAD_PRIOR_MODEL:
        print("Loading model...")
        model = keras.models.load_model("data/model.h5")
    else:
        print("Building model...")
        model = Sequential()
        '''
		seqtoseq = SimpleSeq2Seq(
			output_dim = 1,
			output_length = SEQUENCE_LENGTH,
			batch_input_shape=(BATCH_SIZE,SEQUENCE_LENGTH,1),
			depth=3
			)
		'''
        seqtoseq = AttentionSeq2Seq(output_dim=1,
                                    output_length=SEQUENCE_LENGTH,
                                    batch_input_shape=(BATCH_SIZE,
                                                       SEQUENCE_LENGTH, 1),
                                    depth=1)

        model.add(seqtoseq)
        print("Compiling model...")
        model.compile(loss='mse', optimizer='sgd')

    print("Fitting model...")
    model.fit(x, y, batch_size=BATCH_SIZE, nb_epoch=1)
    '''
	for i in range(int(len(x)/BATCH_SIZE)):
		print("Dataset "+(str(i)))

		cur_x = np.empty([BATCH_SIZE,1,SEQUENCE_LENGTH])
		cur_y = np.empty([BATCH_SIZE,1,SEQUENCE_LENGTH])

		for j in range(BATCH_SIZE):
			cur_x[j][0] = x[i*BATCH_SIZE+j][0]
			cur_y[j][0] = y[i*BATCH_SIZE+j][0]

		model.fit(cur_x,cur_y,batch_size=BATCH_SIZE,nb_epoch=5)

	'''
    #model.fit(x,y,batch_size=BATCH_SIZE,nb_epoch=5)
    #model.fit(x,y,batch_size=len(x),nb_epoch=1,show_accuracy=True,verbose=1)
    print("Saving model...")
    model.save("data/model.h5")

    while True:
        query = input("You: ")
        if query == "exit":
            break
        query = convert_sentence_to_ids(query, mappings)
        response = model.predict(pad(query))
        print(response)

    print("\nDone.")
print(x_train.shape)
print(y_train.shape)

print('Validation Data:')
print(x_val.shape)
print(y_val.shape)

# Try replacing GRU, or SimpleRNN.

HIDDEN_SIZE = 128
BATCH_SIZE = 128
LAYERS = 3

model = AttentionSeq2Seq(input_dim=MAX_NUM_WORDS,
                         input_length=MAXLEN,
                         hidden_dim=128,
                         output_length=MAXLEN - 5,
                         output_dim=MAX_NUM_WORDS,
                         depth=4)
model.compile(loss='mse', optimizer='rmsprop')
print(model.summary())
model.fit(x_train,
          y_train,
          batch_size=BATCH_SIZE,
          epochs=EPOCHS,
          validation_data=(x_val, y_val))

model.save('models/seq2seq.h5')

model_l = load_model('models/seq2seq.h5')

#test model
Exemplo n.º 32
0
    def Seq2SeqModel(self):
        """
        Function can input the data and train the model seq2seq.
        :return:
        """
        preprocess = Preprocess()
        # X_train, y_train, X_test, y_test, X_validation, y_validation = np.array()
        print("1. Generate database without Completion time")
        print("2. Generate database with Completion time")
        print("3. Training without Completion time")
        print("4. Training with Completion time")
        print("Your choice: ")
        choice = input()
        if choice == '1':
            preprocess.preprcessingData("../database/base.txt", size)
            return None
        elif choice == '2':
            preprocess.preprcessingDatawithC("../database/base.txt", size)
            return None
        elif choice == '3':
            input_dim = 2
            X_train, y_train, X_test, y_test, X_validation, y_validation = preprocess.divideData(size, num_instance)
        elif choice == '4':
            input_dim = 4
            X_train, y_train, X_test, y_test, X_validation, y_validation = preprocess.divideDatawithC(size,
                                                                                                      num_instance)

        # test with one instance

        # X_train = []
        # y_train = []
        # X_validation = []
        # y_validation = []
        #
        # with open('test2.csv') as data:
        #     reader = csv.reader(data)
        #     dataSet = list(reader)
        #     trainning_set = dataSet[:32]
        #     #print(type(trainning_set))
        #     validation_set = dataSet[32:44]
        #     #print(validation_set)
        #
        #     for line in trainning_set:
        #         ptimes_list, solved_list = preprocess.saveLinewithC(line)
        #         # ptimes_list = preprocessing.scale(ptimes_list)
        #         X_train.append(ptimes_list)
        #         y_train.append(solved_list)
        #
        #     X_train = np.asarray(X_train)
        #     # print(X_train)
        #     y_train = np.asarray(y_train)
        #     y_train = np.reshape(y_train, (len(y_train), 100, 1))
        #
        #     for l in validation_set:
        #         ptimes_lis, solved_lis = preprocess.saveLinewithC(l)
        #         X_validation.append(ptimes_lis)
        #         y_validation.append(solved_lis)
        #
        #     #print(X_validation)
        #
        #     X_validation = np.asarray(X_validation)
        #     #print(X_validation)
        #     y_validation = np.asarray(y_validation)
        #     y_validation = np.reshape(y_validation, (len(y_validation), 100, 1))
        # print(X_validation)
        # print(y_validation)
        #     print(X_train[0])
        #     print(y_train[0])

        # X_train = np.random.random((samples, input_length, input_dim))
        # y_train = np.random.random((samples, output_length, 3))
        # y_train = np.reshape(y_train, (len(y_train), 100, 1))
        # y_train = np.argmax(y_train, axis=2)
        # print(X_train[1])
        # print(y_train[1])

        model = AttentionSeq2Seq(output_dim=output_dim, hidden_dim=hidden_dim, output_length=output_length,
                                 input_shape=(input_length, input_dim), depth=1)

        # print(model.summary())
        adam = optimizers.adam(decay=1e-6)
        seq2seqnn = SeqSeqNN()
        # model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy', WinAcc, OutWinAcc])
        # model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy', WinAcc, OutWinAcc])
        # model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy', WinAcc, OutWinAcc])

        model.compile(loss='categorical_crossentropy', optimizer='adam',
                      metrics=['accuracy', seq2seqnn.WinAcc,seq2seqnn.WinAcc,seq2seqnn.OutWinAcc,])

        YY = []
        for y in y_train:
            YY.append(to_categorical(y))
        YY = np.asarray(YY)

        YYv = []
        for yv in y_validation:
            YYv.append(to_categorical(yv))
        YYv = np.asarray(YYv)

        YYt = []
        for yt in y_test:
            YYt.append(to_categorical(yt))
        YYt = np.asarray(YYt)

        # checkpoint
        filepath = "best_weights.h5"

        checkpoint = ModelCheckpoint(filepath, monitor='val_WinAcc', save_best_only=True, verbose=0, mode='auto')
        callbacks_list = [checkpoint]

        # history = model.fit(X_train, YY, validation_data=(X_validation, YYv), epochs=2, batch_size=64,
        #                     callbacks=callbacks_list)
        maxfeatures = np.max(np.max(X_train, axis=1), axis=0)
        meanfeatures = np.mean(np.mean(X_train, axis=1), axis=0)
        stdfeatures = np.mean(np.std(X_train, axis=1), axis=0)
        # print(maxfeatures.shape)
        # print(maxfeatures)
        # print(meanfeatures)
        # print(stdfeatures)
        maxfeatures = 1 / maxfeatures
        # X_train=np.multiply(maxfeatures,X_train)
        # X_train=(X_train-meanfeatures)/stdfeatures
        maxfeatures = np.max(np.max(X_train, axis=1), axis=0)
        # print(maxfeatures)
        # input()
        # history = model.fit(X_train, YY, epochs=50000, validation_data=(X_validation, YYv), batch_size=64,
        #                     callbacks=callbacks_list)

        history = model.fit(X_train, YY, validation_data=(X_validation, YYv), epochs=5000, batch_size=64,
                            callbacks=callbacks_list)
        # predict_test = model.predict(X_test)
        # print(predict_test)
        # predict = K.argmax(predict_test, axis=2)
        # print(K.get_value(predict).shape)
        # print(predict_test[10])
        # print("------")
        # print(y_test.shape)

        # list all data in history
        print(history.history.keys())
        # summarize history for accuracy
        # plt.plot(history.history['acc'])

        # summarize history for loss
        plt.plot(history.history['loss'])
        plt.plot(history.history['val_loss'])
        plt.title('model loss')
        plt.ylabel('loss')
        plt.xlabel('epoch')
        plt.legend(['train', 'test'], loc='upper left')
        plt.show()

        plt.plot(history.history['WinAcc'])
        plt.plot(history.history['val_WinAcc'])
        plt.title('model WinAcc')
        plt.ylabel('WinAcc')
        plt.xlabel('epoch')
        plt.legend(['train', 'test'], loc='upper left')
        plt.show()

        plt.plot(history.history['OutWinAcc'])
        plt.plot(history.history['val_OutWinAcc'])
        plt.title('model OutWinAcc')
        plt.ylabel('OutWinAcc')
        plt.xlabel('epoch')
        plt.legend(['train', 'test'], loc='upper left')
        plt.show()