Exemplo n.º 1
0
 def test_ccor(self):
     t0 = ts(times=[0,1,2,3],values=[1,2,3,4])
     t0_stand = distances.stand(t0,t0.mean(),t0.std())
     t1 = ts(times=[0,1,2,3],values=[-1,2,1,-1])
     t1_stand = distances.stand(t1,t1.mean(), t1.std())
     d = distances.ccor(t0_stand,t1_stand)
     assert (str(d) == str(np.array([0.25819889,-0.94672926,-0.0860663,0.77459667])))
Exemplo n.º 2
0
 def test_kernelcorr(self):
     """tests that the kernelized cross correlation is 1 when
     the two timeseries are identical"""
     
     t0 = ts(times=[0,1,2,4,5,6],values=[3,4,5,6,7,8])
     t0_stand = distances.stand(t0,t0.mean(),t0.std())
     t1 = ts(times=[0,1,2,4,5,6],values=[3,4,5,6,7,8])
     t1_stand = distances.stand(t1,t1.mean(), t1.std())   
     assert distances.kernel_corr(t1_stand, t0_stand) == 1
     
     t3 = ts(times=[0,1,2,4,5,6],values=[3,7,9,10,16,20])
     t3_stand = distances.stand(t3,t3.mean(), t3.std())          
     assert (distances.kernel_corr(t1_stand, t3_stand) < 1)
Exemplo n.º 3
0
def random_ts(a):
    """Creates a TimeSeries with random values
    a: scaling term to generate random values for time series
    """
    t = np.arange(0.0, 1.0, 0.01)
    v = a * np.random.random(100)
    return ts(t, v)
Exemplo n.º 4
0
 def test_standardize(self):
     t0 = ts(times=[0,1,2,4,5,6],values=[3,4,5,6,7,8])
     assert t0.mean() == 5.5 #check mean
     assert t0.std() == np.sqrt(17.5/6.0) #check sqrt
     
     standardized_values = distances.stand(t0,t0.mean(),t0.std()).values()
     assert (str(standardized_values) == str(np.array([-1.46385011,-0.87831007,-0.29277002,0.29277002,0.87831007,1.46385011]))) #check that standardized values are correct
Exemplo n.º 5
0
def decode(json_object):
    with open(json_object, 'r') as infile:
        try:
            d = json.load(infile)
            return ts(d['times'], d['values'])
        except json.JSONDecodeError:
            raise TSDBInputError('Invalid JSON object received\n')
Exemplo n.º 6
0
def tsmaker(m, s, j):
    """Makes a TimeSeries whose values are approximately normally distributed
    m: location parameter for normal pdf
    s: scale parameter for normal pdf
    j: coefficient for extra randomness added to normally distributed values
    """
    t = np.arange(0.0, 1.0, 0.01)
    v = norm.pdf(t, m, s) + j * np.random.randn(100)
    return ts(t, v)
Exemplo n.º 7
0
def interpolate_to_match_input(ts_database, ts_input):
    """
    interpolate the generated timeseries in the database to match the timeseries
    input from the client
    
    Parameter
    ----------------
    ts_input: timeseries input by the client
    ts_database: the timeseries generated in the database
    """
    ts_input_times = ts_input.times()
    ts_database_times = ts_database.times()
    interpolated_values = ts_database.interpolate(ts_input_times)
    interpolated_ts = ts(ts_input_times, interpolated_values)
    return interpolated_ts
Exemplo n.º 8
0
    "compute a kernelized correlation so that we can get a real distance"
    num = np.sum(np.exp(mult * ccor(ts1, ts2)))
    denom1 = np.sqrt(np.sum(np.exp(mult * ccor(ts1, ts1))))
    denom2 = np.sqrt(np.sum(np.exp(mult * ccor(ts2, ts2))))
    return (num / denom1) / denom2


def distance(ts1, ts2, mult=1):
    """Calculates the distance metric using the kernal coefficient"""
    return 2 * (1 - kernel_corr(ts1, ts2, mult))


##this is for a quick and dirty test of these functions
if __name__ == "__main__":

    t0 = ts(times=[0, 1, 2, 4, 5, 6], values=[3, 4, 20, 6, 7, 8])
    t0_stand = stand(t0, t0.mean(), t0.std())
    t1 = ts(times=[0, 1, 2, 4, 5, 6], values=[3, 4, 5, 6, 7, 8])
    t1_stand = stand(t1, t1.mean(), t1.std())

    print(distance(t0_stand, t1_stand))

    t1 = tsmaker(0.5, 0.1, 0.01)
    t2 = tsmaker(0.5, 0.1, 0.01)

    import matplotlib.pyplot as plt
    plt.plot(t1)
    plt.plot(t2)
    plt.show()
    standts1 = stand(t1, t1.mean(), t1.std())
    standts2 = stand(t2, t2.mean(), t2.std())
Exemplo n.º 9
0
 def test_distance(self):
     t0 = ts(times=[0,1,2,4,5,6],values=[3,4,5,6,7,8])
     t0_stand = distances.stand(t0,t0.mean(),t0.std())
     t1 = ts(times=[0,1,2,4,5,6],values=[3,4,5,6,7,8])
     t1_stand = distances.stand(t1,t1.mean(), t1.std())        
     assert distances.distance(t0_stand, t1_stand) == 0
Exemplo n.º 10
0
 def test_maxcorratphase(self):
     t0 = ts(times=[0,1,2,3],values=[1,2,3,4])
     t0_stand = distances.stand(t0,t0.mean(),t0.std())
     t1 = ts(times=[0,1,2,3],values=[-1,2,1,-1])
     t1_stand = distances.stand(t1,t1.mean(), t1.std()) 
     assert (distances.max_corr_at_phase(t0_stand,t1_stand)) == (3, 0.77459666924148329)
Exemplo n.º 11
0
 def test_standardizeConstant(self):
     t0 = ts(times=[0,1,2,4,5,6],values=[3,3, 3, 3, 3, 3])
     standardized_values = distances.stand(t0,t0.mean(),t0.std()).values()
     assert (str(standardized_values) == str(np.array([0.,0.,,0.,0.,0.]))) #check that standardize a series of constant return a series of zeros
Exemplo n.º 12
0
def sdecode(json_string):
    try:
        d = json.loads(json_string)
        return ts(d['times'], d['values'])
    except json.JSONDecodeError:
        raise TSDBInputError('Invalid JSON object received:\n'+str(json_str))