def load_image(request): img_name = 'img' + str(time.time() * 1000) + '.jpg' img_path = '/img/' + img_name dest = open(img_path, 'wb+') for chunk in request.FILES['image'].chunks(): dest.write(chunk) dest.close() if request.user.is_authenticated(): add_time = time.gmtime() ans = request.POST.get('ans', '') obj = Picture(pic_name=img_name, user=request.user.username, add_time=add_time, vote=0, ans=ans, recognized='') else: add_time = time.gmtime() ans = request.POST.get('ans', '') obj = Picture(pic_name=img_name, user='******', add_time=add_time, vote=0, ans=ans, recognized='') doc = Document() body = doc.createElement('body') doc.appendChild(body) thx = doc.createTextNode('Thanx!') doc.appendChild(thx) c = Client() c.Connect() c.Send(img_path) return HttpResponse(doc, mimetype='application/xml')
def __init__(self, gun): self.gun = gun test_server = self.gun.get_option('test_server') test_port = self.gun.get_option('test_port') test_socket = TSocket.TSocket(test_server, test_port) socket = test_socket.create() self.transport = TTransport.TFramedTransport(socket) protocol = TBinaryProtocol.TBinaryProtocol(self.transport) self.client = Client(protocol)
from service.client import Client # 数据组 sample = [[0, 1], [1, 0], [1, 1], [1, 2], [2, 1], [2, 2]] # 标签组 label = [0, 0, 0, 1, 1, 1] # 创建SVM学习器,使用默认参数。 svm = SVM() # 训练分类器 svm.train(sample, label) #测试分类器对新样本的分类 print(svm.classify([3, 3])) print(svm.classify([0, 0])) print(svm.classify([[1, 3], [0, 3], [0, 2], [0, 1]])) # 创建服务器连接 c = Client("219.223.243.8", 8088) # 保存分类器到服务器 c.save(svm, "test") # 载入之前保存在服务器上的分类器 new_svm = c.load("test") # 测试新分类器是否和之前的结果一样 print(new_svm.classify([3, 3])) print(new_svm.classify([0, 0])) print(new_svm.classify([[1, 3], [0, 3], [0, 2], [0, 1]]))
def setUp(self): self.test_client = Client('mock name', 'mock last', '')
class ClientTestCase(unittest.TestCase): def setUp(self): self.test_client = Client('mock name', 'mock last', '') def test_name_last_name(self): expected_name = 'mock name mock last' self.assertEqual(self.test_client.get_formatted_name(), expected_name) def test_name_add_preexistence(self): self.assertEqual(len(self.test_client.get_all_preexistence()), 0) self.test_client.add_preexistence('mock preexistence') self.assertEqual(len(self.test_client.get_all_preexistence()), 1) self.assertEqual(self.test_client.get_preexistence(0), 'mock preexistence') self.assertEqual(self.test_client.get_preexistence(1), 'There is no such preexistence') def test_name_remove_preexistence(self): self.assertEqual(len(self.test_client.get_all_preexistence()), 0) self.test_client.add_preexistence('mock preexistence') self.test_client.add_preexistence('mock preexistence 2') self.test_client.add_preexistence('mock preexistence 3') self.assertEqual(len(self.test_client.get_all_preexistence()), 3) self.test_client.remove_preexistence(1) self.assertEqual(self.test_client.get_preexistence(0), 'mock preexistence') self.assertEqual(self.test_client.get_preexistence(1), 'mock preexistence 3') self.assertEqual(self.test_client.get_preexistence(2), 'There is no such preexistence')
__author__ = 'ict' from service.client import Client # 测试用的变量 test = { 1: [1, 2, 3], 2: [1, 2, 3], 3: [1, 2, 3], } # 创建一个到服务器的连接 c = Client("219.223.243.8", 8088) # 测试对变量的各种存取操作 print(c.save(test, "test")) print(c.load("test")) print(c.list()) print(c.remove("test")) print(c.load("test")) print(c.list()) # 关闭连接 c.close()
# 数据组 sample = [[0, 1], [1, 0], [1, 1], [1, 2], [2, 1], [2, 2]] # 标签组 label = [0, 0, 0, 1, 1, 1] # k值 k = 3 # 创建k近邻学习器,使用欧几里得距离。 knn = KNN(k) # 训练分类器 knn.train(sample, label) # 测试分类器对新样本的分类 print(knn.classify([3, 3])) print(knn.classify([0, 0])) print(knn.classify([[1, 3], [0, 3]])) # 创建服务器连接 c = Client("219.223.243.8", 8088) # 保存分类器到服务器 c.save(knn, "test-knn") # 载入之前保存在服务器上的分类器 new_knn = c.load("test-knn") # 测试新分类器是否和之前的结果一样 print(new_knn.classify([3, 3])) print(new_knn.classify([0, 0])) print(new_knn.classify([[1, 3], [0, 3]]))
"-" * size_len + "-+-" + "-" * lock_len + "-+") for name, attr in var_dict.items(): size_str = normal_size(attr[size_offset]) print("| " + str(name) + " " * (name_len - len(str(name))), end="") print(" | " + str(attr[type_offset]) + " " * (type_len - len(str(attr[type_offset]))), end="") print(" | " + str(size_str) + " " * (size_len - len(size_str)), end="") print(" | " + str(attr[lock_offset]) + " " * (lock_len - len(str(attr[lock_offset]))) + " |") print("+-" + "-" * name_len + "-+-" + "-" * type_len + "-+-" + "-" * size_len + "-+-" + "-" * lock_len + "-+") if __name__ == "__main__": c = Client("219.223.243.8", 10555) while True: var = c.list() print_list(var) cmd = input(">>> ") tmp_list = cmd.split(" ") cmd_list = [] for one_cmd in tmp_list: if len(one_cmd) != 0: cmd_list.append(one_cmd) if len(cmd_list) == 0: continue start_time = time.time() try: if cmd_list[0] == "print": if len(cmd_list) != 2:
print("| " + name_title + " " * (name_len - len(name_title)), end="") print(" | " + type_title + " " * (type_len - len(type_title)), end="") print(" | " + size_title + " " * (size_len - len(size_title)), end="") print(" | " + lock_title + " " * (lock_len - len(lock_title)) + " |") print("+-" + "-" * name_len + "-+-" + "-" * type_len + "-+-" + "-" * size_len + "-+-" + "-" * lock_len + "-+") for name, attr in var_dict.items(): size_str = normal_size(attr[size_offset]) print("| " + str(name) + " " * (name_len - len(str(name))), end="") print(" | " + str(attr[type_offset]) + " " * (type_len - len(str(attr[type_offset]))), end="") print(" | " + str(size_str) + " " * (size_len - len(size_str)), end="") print(" | " + str(attr[lock_offset]) + " " * (lock_len - len(str(attr[lock_offset]))) + " |") print("+-" + "-" * name_len + "-+-" + "-" * type_len + "-+-" + "-" * size_len + "-+-" + "-" * lock_len + "-+") if __name__ == "__main__": c = Client("219.223.243.8", 10555) while True: var = c.list() print_list(var) cmd = input(">>> ") tmp_list = cmd.split(" ") cmd_list = [] for one_cmd in tmp_list: if len(one_cmd) != 0: cmd_list.append(one_cmd) if len(cmd_list) == 0: continue start_time = time.time() try: if cmd_list[0] == "print": if len(cmd_list) != 2: