Exemplo n.º 1
0
 def __init__(self, out_dim, hidden_dim, n_layers, processing_steps=3):
     super(MPNNReadout, self).__init__()
     with self.init_scope():
         self.set2set = Set2Set(in_channels=hidden_dim, n_layers=n_layers)
         self.linear1 = links.Linear(None, hidden_dim)
         self.linear2 = links.Linear(None, out_dim)
     self.out_dim = out_dim
     self.hidden_dim = hidden_dim
     self.n_layers = n_layers
     self.processing_steps = processing_steps
Exemplo n.º 2
0
 def __init__(self, node_features = None, edge_features = None, target_features = 1, hidden_features = 73, num_layers = 3, s2s_processing_steps = 12, type="regression", dropout=0.5, **kwargs):
     super(MPNN_ENN_K_Set2Set, self).__init__()
     self.input = nn.Linear(in_features=node_features,out_features=hidden_features)
     self.ee = EdgeEncoderMLP( edge_features, hidden_features )
     self.mpnn = MPNN_enn(edge_features, hidden_features)
     self.mpnn.set_T(num_layers)
     self.s2s = Set2Set(hidden_features, s2s_processing_steps, num_layers=1)
     self.output = nn.Linear(in_features=hidden_features,out_features=target_features)
     self.type = type
     self.output_function = get_output_function(type,target_features)
Exemplo n.º 3
0
 def __init__(self, node_features = None, edge_features = None, target_features = 1, hidden_features = 73, num_layers = 3, s2s_processing_steps = 12, type="regression", dropout=0.5, **kwargs):
     super(EdgeRES1_K_Set2Set, self).__init__()
     self.mlpin = TransitionMLP( node_features, hidden_features )
     self.gcmid = RESKnorm( hidden_features, hidden_features, hidden_features, nlayers = num_layers, residue_layers=1 )
     self.mlpout = TransitionMLP( hidden_features, target_features )
     
     self.ee = EdgeEncoderMLP( edge_features, hidden_features )
     
     self.s2s = Set2Set(hidden_features, s2s_processing_steps, num_layers=1)
     
     self.type = type
     self.output_function = get_output_function(type,target_features)
Exemplo n.º 4
0
 def __init__(self, node_features = None, edge_features = None, target_features = 1, hidden_features = 73, num_layers = 3, s2s_processing_steps = 12, type="regression", dropout=0.5, **kwargs):
     super(EdgeGCN_K_Set2Set, self).__init__()
     self.mlpin = TransitionMLP( node_features, hidden_features )
     self.gcmid = nn.ModuleList(
             [ EdgeGraphConvolution( hidden_features, hidden_features )
                     for _ in range(num_layers) ] )
     self.mlpout = TransitionMLP( hidden_features, target_features )
     self.dropout = dropout
     
     self.ee = EdgeEncoderMLP( edge_features, hidden_features )
     
     self.s2s = Set2Set(hidden_features, s2s_processing_steps, num_layers=1)
     
     self.type = type
     self.output_function = get_output_function(type,target_features)
Exemplo n.º 5
0
 def __init__(self,
              input_dim,
              hidden_dim,
              embedding_dim,
              label_dim,
              num_layers,
              pred_hidden_dims=[],
              concat=True,
              bn=True,
              dropout=0.0,
              args=None):
     super(GcnSet2SetEncoder, self).__init__(input_dim,
                                             hidden_dim,
                                             embedding_dim,
                                             label_dim,
                                             num_layers,
                                             pred_hidden_dims,
                                             concat,
                                             bn,
                                             dropout,
                                             args=args)
     self.s2s = Set2Set(self.pred_input_dim, self.pred_input_dim * 2)