Exemplo n.º 1
0
def EXTRACT():
    path = input("-> Enter path to target's exposure time directory: ")
    images = glob.glob(path + '/data/*.fits')
    psf_data = glob.glob(path + '/psf/*')
    if len(psf_data) == 3 * len(images):
        sex.sextractor(path)
        sex.src_filter(path)
    else:
        sex.sextractor_psf(path)
        psf.psfex(path)
        sex.sextractor(path)
        sex.src_filter(path)
Exemplo n.º 2
0
def PSF(path):
    '''Computes PSF model of science images. Uses ``PSFex`` (Bertin).
    
    :param str path: Path of data file tree (contains the **configs**, **data**, **psf**, **residuals**, **sources**, **templates** directories). Use a comma-separated list for mapping to multiple datasets.
    :returns: PSF models of each science image are ouputted into the **psf** directory with the *.psf* suffix.
    
    '''
    paths = (path.replace(' ','')).split(',')
    del path
    for path in paths:
        ims = sex.sextractor_psf(path)
        psfex(path, images=ims)   
Exemplo n.º 3
0
def TEST():
    #get data from LCO public archive and put in target directory under 'TEST' folder
    print("-> Getting data from LCO...")
    response = requests.get('https://archive-api.lco.global/frames/?' +
                            'RLEVEL=91&' +
                            'PROPID='+'standard&'
                            'OBJECT='+'L113&' + 
                            'FILTER='+'B&'
                            'start='+'2018-9-14'+'&' +
                            'end='+'2018-9-15'+'&'
                            ).json()
    
    frames = response['results']
    
    #delete bad images
    del_fr = []
    
    for fr in frames:
        if fr['id'] != 9602135 and fr['id'] != 9602132:
            del_fr.append(fr)
    
    for delete in del_fr:
        del frames[frames.index(delete)]
    
    #download data
    temp_loc = loc + '/sdi/temp/'
    os.mkdir(temp_loc+'test_data')
    for frame in frames:
      with open(temp_loc + 'test_data/' + frame['filename'], 'wb') as f:
        f.write(requests.get(frame['url']).content)
        
    #funpack and move to 'TEST' folder
    obtain.process()
    obtain.movetar()
    old_data_location = obtain.rename()
    data_location = old_data_location.replace('L113', 'TEST')
    os.rename(old_data_location[:29], data_location[:29])
    
    #align and combine images
    test_loc = data_location[:-5]
    check_saturation.check_saturate(test_loc + '/data')
    ref_image.ref_image(test_loc + '/data')
    align_astroalign.align2(test_loc + '/data')
#    align_skimage.skimage(test_loc + '/data')
    combine_numpy.combine_median(test_loc + '/data')
#    align_skimage.skimage_template(test_loc + '/data')
    
    #add three fake stars to reference image
    print("\n-> Adding fake stars to test image...")
    hdu = fits.getdata(test_loc + '/data/09:14:00.260_A_.fits')
    
    h, w = img_shape = np.shape(hdu)
    pos_x = [1500,2000,1200]
    pos_y = [1600,1400,2200]
    array = np.array([ 0.65343465,  0.50675629,  0.84946314])
    fluxes = 2000000.0 + array * 300.0
    img = np.zeros(img_shape)
    for x, y, f in zip(pos_x, pos_y, fluxes):
        img[x, y] = f
    
    img = gaussian_filter(img, sigma=15.0, mode='constant')
    
    final = fits.PrimaryHDU(hdu+img)
    final.writeto(test_loc + '/data/09:14:00.260_A_.fits', overwrite=True)
    
    #subtract images using ISIS
    subtract_ais.isis_sub_test(test_loc)
    
    #get PSFs then perform SExtractor on residual images
    sex.sextractor_psf(test_loc)
    psf.psfex(test_loc)
    sex.sextractor(test_loc)
    
    #test the results of the test function against known values
#    with open(test_loc + '/sources/sources.txt', 'r') as source:
#        lines = source.readlines()
#        source.close()
#    
#    with open(os.path.dirname(sex.__file__) + '/test_config/test_sources.txt', 'r') as test_source:
#        lines2 = test_source.readlines()
#        test_source.close()
        
    res_image_loc = os.path.dirname(sex.__file__) + '/test_config/09:14:00.260_A_residual_.fits'
    
    test_image_data = fits.getdata(res_image_loc)
    
    residual = glob.glob(test_loc + '/residuals/*_A_residual_.fits')
    
    residual_data = fits.getdata(residual[0])
#
#    if lines == lines2:
#        print("\t-> Sources matched to control")
    if test_image_data.all() == residual_data.all():
        print("-> Residuals matched to control\n-> TEST SUCCESSFUL!")
#    if lines == lines2 and test_image_data.all() == residual_data.all():
#        print("\t-> Test successful!")
    if test_image_data.all() != residual_data.all():
        print("-> Test failure: Results do not match controls")
    
    #display final residual test image
    os.system('ds9 %s -scale zscale' % (residual[0]))
Exemplo n.º 4
0
    array = np.array([ 0.65343465,  0.50675629,  0.84946314])
    fluxes = 2000000.0 + array * 300.0
    img = np.zeros(img_shape)
    for x, y, f in zip(pos_x, pos_y, fluxes):
        img[x, y] = f
    
    img = gaussian_filter(img, sigma=15.0, mode='constant')
    
    final = fits.PrimaryHDU(hdu+img)
    final.writeto(test_loc + '/data/09:14:00.260_A_.fits', overwrite=True)
    
    #subtract images using ISIS
    subtract_ais.isis_sub_test(test_loc)
    
    #get PSFs then perform SExtractor on residual images
    sex.sextractor_psf(test_loc)
    psf.psfex(test_loc)
    sex.sextractor(test_loc)
    
    #test the results of the test function against known values
#    with open(test_loc + '/sources/sources.txt', 'r') as source:
#        lines = source.readlines()
#        source.close()
#    
#    with open(os.path.dirname(sex.__file__) + '/test_config/test_sources.txt', 'r') as test_source:
#        lines2 = test_source.readlines()
#        test_source.close()
        
    res_image_loc = os.path.dirname(sex.__file__) + '/test_config/09:14:00.260_A_residual_.fits'
    
    test_image_data = fits.getdata(res_image_loc)
Exemplo n.º 5
0
import sex
import psf
import glob


def EXTRACT():
    path = input("-> Enter path to target's exposure time directory: ")
    images = glob.glob(path + '/data/*.fits')
    psf_data = glob.glob(path + '/psf/*')
    if len(psf_data) == 3 * len(images):
        sex.sextractor(path)
        sex.src_filter(path)
    else:
        sex.sextractor_psf(path)
        psf.psfex(path)
        sex.sextractor(path)
        sex.src_filter(path)


if __name__ == '__main__':
    path = input("-> Enter path to target's exposure time directory: ")
    images = glob.glob(path + '/data/*.fits')
    psf_data = glob.glob(path + '/psf/*')
    if len(psf_data) == 3 * len(images):
        sex.sextractor(path)
        sex.src_filter(path)
    else:
        sex.sextractor_psf(path)
        psf.psfex(path)
        sex.sextractor(path)
        sex.src_filter(path)