Exemplo n.º 1
0
                obj.dimensions.y = w
                obj.dimensions.z = _h
                objects_msg.objects.append(obj)
    if flag is True:
        pub.publish(objects_msg)

    stop = timeit.default_timer()
    print('Time: ', stop - start)


if __name__ == '__main__':
    rospack = rospkg.RosPack()
    package_path = rospack.get_path('super_fast_object_detection')
    configs = parse_demo_configs()
    configs.pretrained_path = package_path + '/checkpoints/fpn_resnet_18/fpn_resnet_18_epoch_300.pth'
    model = create_model(configs)
    print('\n\n' + '-*=' * 30 + '\n\n')
    assert os.path.isfile(configs.pretrained_path), "No file at {}".format(
        configs.pretrained_path)
    model.load_state_dict(
        torch.load(configs.pretrained_path, map_location='cuda:0'))
    print('Loaded weights from {}\n'.format(configs.pretrained_path))
    configs.device = torch.device(
        'cpu' if configs.no_cuda else 'cuda:{}'.format(configs.gpu_idx))
    model = model.to(device=configs.device)
    model.eval()

    print("Started Node")
    rospy.init_node('SuperFastObjectDetection', anonymous=True)
    pub = rospy.Publisher('detected_objects',
                          DetectedObjectArray,
Exemplo n.º 2
0
def main_worker(gpu_idx, configs):
    configs.gpu_idx = gpu_idx
    configs.device = torch.device('cpu' if configs.gpu_idx is None else 'cuda:{}'.format(configs.gpu_idx))

    if configs.distributed:
        if configs.dist_url == "env://" and configs.rank == -1:
            configs.rank = int(os.environ["RANK"])
        if configs.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            configs.rank = configs.rank * configs.ngpus_per_node + gpu_idx

        dist.init_process_group(backend=configs.dist_backend, init_method=configs.dist_url,
                                world_size=configs.world_size, rank=configs.rank)
        configs.subdivisions = int(64 / configs.batch_size / configs.ngpus_per_node)
    else:
        configs.subdivisions = int(64 / configs.batch_size)

    configs.is_master_node = (not configs.distributed) or (
            configs.distributed and (configs.rank % configs.ngpus_per_node == 0))

    if configs.is_master_node:
        logger = Logger(configs.logs_dir, configs.saved_fn)
        logger.info('>>> Created a new logger')
        logger.info('>>> configs: {}'.format(configs))
        tb_writer = SummaryWriter(log_dir=os.path.join(configs.logs_dir, 'tensorboard'))
    else:
        logger = None
        tb_writer = None

    # model
    model = create_model(configs)

    # load weight from a checkpoint
    if configs.pretrained_path is not None:
        assert os.path.isfile(configs.pretrained_path), "=> no checkpoint found at '{}'".format(configs.pretrained_path)
        model.load_state_dict(torch.load(configs.pretrained_path, map_location='cpu'))
        if logger is not None:
            logger.info('loaded pretrained model at {}'.format(configs.pretrained_path))

    # resume weights of model from a checkpoint
    if configs.resume_path is not None:
        assert os.path.isfile(configs.resume_path), "=> no checkpoint found at '{}'".format(configs.resume_path)
        model.load_state_dict(torch.load(configs.resume_path, map_location='cpu'))
        if logger is not None:
            logger.info('resume training model from checkpoint {}'.format(configs.resume_path))

    # Data Parallel
    model = make_data_parallel(model, configs)

    # Make sure to create optimizer after moving the model to cuda
    optimizer = create_optimizer(configs, model)
    lr_scheduler = create_lr_scheduler(optimizer, configs)
    configs.step_lr_in_epoch = False if configs.lr_type in ['multi_step', 'cosin', 'one_cycle'] else True

    # resume optimizer, lr_scheduler from a checkpoint
    if configs.resume_path is not None:
        utils_path = configs.resume_path.replace('Model_', 'Utils_')
        assert os.path.isfile(utils_path), "=> no checkpoint found at '{}'".format(utils_path)
        utils_state_dict = torch.load(utils_path, map_location='cuda:{}'.format(configs.gpu_idx))
        optimizer.load_state_dict(utils_state_dict['optimizer'])
        lr_scheduler.load_state_dict(utils_state_dict['lr_scheduler'])
        configs.start_epoch = utils_state_dict['epoch'] + 1

    if configs.is_master_node:
        num_parameters = get_num_parameters(model)
        logger.info('number of trained parameters of the model: {}'.format(num_parameters))

    if logger is not None:
        logger.info(">>> Loading dataset & getting dataloader...")
    # Create dataloader
    train_dataloader, train_sampler = create_train_dataloader(configs)
    if logger is not None:
        logger.info('number of batches in training set: {}'.format(len(train_dataloader)))

    if configs.evaluate:
        val_dataloader = create_val_dataloader(configs)
        val_loss = validate(val_dataloader, model, configs)
        print('val_loss: {:.4e}'.format(val_loss))
        return

    for epoch in range(configs.start_epoch, configs.num_epochs + 1):
        if logger is not None:
            logger.info('{}'.format('*-' * 40))
            logger.info('{} {}/{} {}'.format('=' * 35, epoch, configs.num_epochs, '=' * 35))
            logger.info('{}'.format('*-' * 40))
            logger.info('>>> Epoch: [{}/{}]'.format(epoch, configs.num_epochs))

        if configs.distributed:
            train_sampler.set_epoch(epoch)
        # train for one epoch
        train_one_epoch(train_dataloader, model, optimizer, lr_scheduler, epoch, configs, logger, tb_writer)
        if (not configs.no_val) and (epoch % configs.checkpoint_freq == 0):
            val_dataloader = create_val_dataloader(configs)
            print('number of batches in val_dataloader: {}'.format(len(val_dataloader)))
            val_loss = validate(val_dataloader, model, configs)
            print('val_loss: {:.4e}'.format(val_loss))
            if tb_writer is not None:
                tb_writer.add_scalar('Val_loss', val_loss, epoch)

        # Save checkpoint
        if configs.is_master_node and ((epoch % configs.checkpoint_freq) == 0):
            model_state_dict, utils_state_dict = get_saved_state(model, optimizer, lr_scheduler, epoch, configs)
            save_checkpoint(configs.checkpoints_dir, configs.saved_fn, model_state_dict, utils_state_dict, epoch)

        if not configs.step_lr_in_epoch:
            lr_scheduler.step()
            if tb_writer is not None:
                tb_writer.add_scalar('LR', lr_scheduler.get_lr()[0], epoch)

    if tb_writer is not None:
        tb_writer.close()
    if configs.distributed:
        cleanup()