Exemplo n.º 1
0
    def test_material_functions(self):
        from sfepy.discrete import Material

        problem = self.problem
        conf = problem.conf

        ts = problem.get_default_ts(step=0)

        conf_mat1 = conf.get_item_by_name('materials', 'mf1')
        mat1 = Material.from_conf(conf_mat1, problem.functions)
        mat1.time_update(ts, None, mode='normal', problem=problem)

        coors = problem.domain.get_mesh_coors()
        assert_(nm.all(coors[:,0] == mat1.get_data(None, 'x_0')))

        conf_mat2 = conf.get_item_by_name('materials', 'mf2')
        mat2 = Material.from_conf(conf_mat2, problem.functions)
        mat2.time_update(ts, None, mode='normal', problem=problem)

        assert_(nm.all(coors[:,1] == mat2.get_data(None, 'x_1')))

        materials = problem.get_materials()
        materials.time_update(ts, problem.equations, mode='normal',
                              problem=problem)
        mat3 = materials['mf3']
        key = mat3.get_keys(region_name='Omega')[0]

        assert_(nm.all(mat3.get_data(key, 'a') == 10.0))
        assert_(nm.all(mat3.get_data(key, 'b') == 2.0))
        assert_(mat3.get_data(None, 'c') == 'ahoj')

        return True
Exemplo n.º 2
0
    def test_material_functions(self):
        from sfepy.discrete import Material

        problem = self.problem
        conf = problem.conf

        ts = problem.get_default_ts(step=0)

        conf_mat1 = conf.get_item_by_name('materials', 'mf1')
        mat1 = Material.from_conf(conf_mat1, problem.functions)
        mat1.time_update(ts, None, mode='normal', problem=problem)

        coors = problem.domain.get_mesh_coors()
        assert_(nm.all(coors[:,0] == mat1.get_data(None, None, 'x_0')))

        conf_mat2 = conf.get_item_by_name('materials', 'mf2')
        mat2 = Material.from_conf(conf_mat2, problem.functions)
        mat2.time_update(ts, None, mode='normal', problem=problem)

        assert_(nm.all(coors[:,1] == mat2.get_data(None, None, 'x_1')))

        materials = problem.get_materials()
        materials.time_update(ts, problem.equations, mode='normal',
                              problem=problem)
        mat3 = materials['mf3']
        key = mat3.get_keys(region_name='Omega')[0]

        assert_(nm.all(mat3.get_data(key, 0, 'a') == 10.0))
        assert_(nm.all(mat3.get_data(key, 0, 'b') == 2.0))
        assert_(mat3.get_data(None, None, 'c') == 'ahoj')

        return True
Exemplo n.º 3
0
    def test_solving(self):
        from sfepy.base.base import IndexedStruct
        from sfepy.discrete import (FieldVariable, Material, Problem, Function,
                                    Equation, Equations, Integral)
        from sfepy.discrete.conditions import Conditions, EssentialBC
        from sfepy.terms import Term
        from sfepy.solvers.ls import ScipyDirect
        from sfepy.solvers.nls import Newton
        from sfepy.mechanics.matcoefs import stiffness_from_lame

        u = FieldVariable('u', 'unknown', self.field)
        v = FieldVariable('v', 'test', self.field, primary_var_name='u')

        m = Material('m', D=stiffness_from_lame(self.dim, 1.0, 1.0))
        f = Material('f', val=[[0.02], [0.01]])

        bc_fun = Function('fix_u_fun', fix_u_fun,
                          extra_args={'extra_arg' : 'hello'})

        fix_u = EssentialBC('fix_u', self.gamma1, {'u.all' : bc_fun})
        shift_u = EssentialBC('shift_u', self.gamma2, {'u.0' : 0.1})

        integral = Integral('i', order=3)

        t1 = Term.new('dw_lin_elastic(m.D, v, u)',
                      integral, self.omega, m=m, v=v, u=u)

        t2 = Term.new('dw_volume_lvf(f.val, v)', integral, self.omega, f=f, v=v)

        eq = Equation('balance', t1 + t2)
        eqs = Equations([eq])

        ls = ScipyDirect({})

        nls_status = IndexedStruct()
        nls = Newton({}, lin_solver=ls, status=nls_status)

        pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
        ## pb.save_regions_as_groups('regions')

        pb.time_update(ebcs=Conditions([fix_u, shift_u]))

        state = pb.solve()

        name = op.join(self.options.out_dir, 'test_high_level_solving.vtk')
        pb.save_state(name, state)

        ok = nls_status.condition == 0
        if not ok:
            self.report('solver did not converge!')

        _ok = state.has_ebc()
        if not _ok:
            self.report('EBCs violated!')

        ok = ok and _ok

        return ok
Exemplo n.º 4
0
    def test_material_functions(self):
        from sfepy.discrete import Material
        from sfepy.base.conf import transform_variables

        problem = self.problem
        conf = problem.conf

        ts = problem.get_default_ts(step=0)

        conf_mat1 = conf.get_item_by_name('materials', 'mf1')
        mat1 = Material.from_conf(conf_mat1, problem.functions)
        mat1.time_update(ts, None, mode='normal', problem=problem)

        coors = problem.domain.get_mesh_coors()
        assert_(nm.all(coors[:, 0] == mat1.get_data(None, 'x_0')))

        conf_mat2 = conf.get_item_by_name('materials', 'mf2')
        mat2 = Material.from_conf(conf_mat2, problem.functions)
        mat2.time_update(ts, None, mode='normal', problem=problem)

        assert_(nm.all(coors[:, 1] == mat2.get_data(None, 'x_1')))

        materials = problem.get_materials()
        materials.time_update(ts,
                              problem.equations,
                              mode='normal',
                              problem=problem)
        mat3 = materials['mf3']
        key = mat3.get_keys(region_name='Omega')[0]

        assert_(nm.all(mat3.get_data(key, 'a') == 10.0))
        assert_(nm.all(mat3.get_data(key, 'b') == 2.0))
        assert_(mat3.get_data(None, 'c') == 'ahoj')

        pb = problem.copy()
        pb.set_variables(transform_variables(conf.variables2))
        pb.set_equations(conf.equations2)
        materials = pb.get_materials()
        materials.time_update(ts, pb.equations, mode='normal', problem=pb)

        mat4 = materials['mf4']
        key = mat4.get_keys(region_name='Omega')[0]
        assert_(nm.all(mat4.get_data(key, 'a') == -2 + 1j))

        mat5 = materials['mf5']
        key = mat5.get_keys(region_name='Omega')[0]
        assert_(nm.all(mat5.get_data(key, 'a') == -2 - 1j))

        mat6 = materials['mf6']
        key = mat6.get_keys(region_name='Circle')[0]
        assert_(nm.all(mat6.get_data(key, 'a') == 1 + 1j))
        key = mat6.get_keys(region_name='Rest')[0]
        assert_(nm.all(mat6.get_data(key, 'a') == 3j))

        return True
def solve_problem(shape, dims, young, poisson, force, transform=None):
    domain = make_domain(dims[:2], shape, transform=transform)

    omega = domain.regions['Omega']
    gamma1 = domain.regions['Gamma1']
    gamma2 = domain.regions['Gamma2']

    field = Field.from_args('fu', nm.float64, 6, omega, approx_order=1,
                            poly_space_base='shell10x')
    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    thickness = dims[2]
    if transform is None:
        pload = [[0.0, 0.0, force / shape[1], 0.0, 0.0, 0.0]] * shape[1]

    elif transform == 'bend':
        pload = [[force / shape[1], 0.0, 0.0, 0.0, 0.0, 0.0]] * shape[1]

    elif transform == 'twist':
        pload = [[0.0, force / shape[1], 0.0, 0.0, 0.0, 0.0]] * shape[1]

    m = Material('m', D=sh.create_elastic_tensor(young=young, poisson=poisson),
                 values={'.drill' : 1e-7})
    load = Material('load', values={'.val' : pload})

    aux = Integral('i', order=3)
    qp_coors, qp_weights = aux.get_qp('3_8')
    qp_coors[:, 2] = thickness * (qp_coors[:, 2] - 0.5)
    qp_weights *= thickness

    integral = Integral('i', coors=qp_coors, weights=qp_weights, order='custom')

    t1 = Term.new('dw_shell10x(m.D, m.drill, v, u)',
                  integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_point_load(load.val, v)',
                  integral, gamma2, load=load, v=v)
    eq = Equation('balance', t1 - t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity with shell10x', equations=eqs, nls=nls, ls=ls)
    pb.time_update(ebcs=Conditions([fix_u]))

    state = pb.solve()

    return pb, state, u, gamma2
Exemplo n.º 6
0
    def _get_material(self, property_array, domain):
        """
        Creates an SfePy material from the material property fields for the
        quadrature points.

        Args:
          property_array: array of the properties with shape (n_x, n_y, n_z, 2)

        Returns:
          an SfePy material

        """
        min_xyz = domain.get_mesh_bounding_box()[0]
        dims = domain.get_mesh_bounding_box().shape[1]

        def _material_func_(ts, coors, mode=None, **kwargs):
            if mode == 'qp':
                ijk_out = np.empty_like(coors, dtype=int)
                ijk = np.floor((coors - min_xyz[None]) / self.dx,
                               ijk_out, casting="unsafe")
                ijk_tuple = tuple(ijk.swapaxes(0, 1))
                property_array_qp = property_array[ijk_tuple]
                lam = property_array_qp[..., 0]
                mu = property_array_qp[..., 1]
                lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1)))
                mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1)))

                from sfepy.mechanics.matcoefs import stiffness_from_lame
                stiffness = stiffness_from_lame(dims, lam=lam, mu=mu)
                return {'lam': lam, 'mu': mu, 'D': stiffness}
            else:
                return

        material_func = Function('material_func', _material_func_)
        return Material('m', function=material_func)
Exemplo n.º 7
0
    def test_boundary_fluxes( self ):
        import os.path as op
        from sfepy.linalg import rotation_matrix2d
        from sfepy.discrete.evaluate import BasicEvaluator
        from sfepy.discrete import Material
        problem = self.problem

        angles = [0, 30, 45]
        region_names = ['Left', 'Right', 'Gamma']
        values = [5.0, -5.0, 0.0]

        variables = problem.get_variables()
        get_state = variables.get_state_part_view
        state = self.state.copy(deep=True)

        problem.time_update(ebcs={}, epbcs={})
#        problem.save_ebc( 'aux.vtk' )

        state.apply_ebc()
        ev = BasicEvaluator( problem )
        aux = ev.eval_residual(state())

        field = variables['t'].field

        conf_m = problem.conf.get_item_by_name('materials', 'm')
        m = Material.from_conf(conf_m, problem.functions)

        name = op.join( self.options.out_dir,
                        op.split( problem.domain.mesh.name )[1] + '_%02d.mesh' ) 

        orig_coors = problem.get_mesh_coors().copy()
        ok = True
        for ia, angle in enumerate( angles ):
            self.report( '%d: mesh rotation %d degrees' % (ia, angle) )
            problem.domain.mesh.transform_coors( rotation_matrix2d( angle ),
                                                 ref_coors = orig_coors )
            problem.set_mesh_coors(problem.domain.mesh.coors,
                                   update_fields=True)
            problem.domain.mesh.write( name % angle, io = 'auto' )
            for ii, region_name in enumerate( region_names ):
                flux_term = 'd_surface_flux.i.%s( m.K, t )' % region_name
                val1 = problem.evaluate(flux_term, t=variables['t'], m=m)

                rvec = get_state( aux, 't', True )
                reg = problem.domain.regions[region_name]
                nods = field.get_dofs_in_region(reg, merge=True)
                val2 = rvec[nods].sum() # Assume 1 dof per node.

                ok = ok and ((abs( val1 - values[ii] ) < 1e-10) and
                             (abs( val2 - values[ii] ) < 1e-10))
                self.report( '  %d. %s: %e == %e == %e'\
                             % (ii, region_name, val1, val2, values[ii]) )

        # Restore original coordinates.
        problem.domain.mesh.transform_coors(rotation_matrix2d(0),
                                            ref_coors=orig_coors)
        problem.set_mesh_coors(problem.domain.mesh.coors,
                               update_fields=True)

        return ok
Exemplo n.º 8
0
    def eval_force(region_name):
        strain = problem.evaluate(
            'ev_cauchy_strain.i.%s(u)' % region_name,
            mode='qp',
            verbose=False,
        )
        D = problem.evaluate(
            'ev_integrate_mat.i.%s(solid.D, u)' % region_name,
            mode='qp',
            verbose=False,
        )

        normal = nm.array([1, 0, 0], dtype=nm.float64)

        s2f = get_full_indices(len(normal))
        stress = nm.einsum('cqij,cqjk->cqik', D, strain)
        # Full (matrix) form of stress.
        mstress = stress[..., s2f, 0]

        # Force in normal direction.
        force = nm.einsum('cqij,i,j->cq', mstress, normal, normal)

        def get_force(ts, coors, mode=None, **kwargs):
            if mode == 'qp':
                return {'force': force.reshape(coors.shape[0], 1, 1)}

        aux = Material('aux', function=Function('get_force', get_force))

        middle_force = -problem.evaluate(
            'ev_integrate_mat.i.%s(aux.force, u)' % region_name,
            aux=aux,
            verbose=False,
        )
        output('%s section axial force:' % region_name, middle_force)
Exemplo n.º 9
0
def solveLaplaceEquationTetrahedral(mesh, meshVTK, boundaryPoints,
                                    boundaryConditions):
    """
    mesh: path to a 3D mesh / sfepy mesh
    
    """
    if isinstance(mesh, str):
        mesh = Mesh.from_file(mesh)

    #Set domains
    domain = FEDomain('domain', mesh)
    omega = domain.create_region('Omega', 'all')
    boundary = domain.create_region(
        'gamma',
        'vertex  %s' % ','.join(map(str, range(meshVTK.GetNumberOfPoints()))),
        'facet')

    #set fields
    field = Field.from_args('fu', np.float64, 1, omega, approx_order=1)
    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')
    m = Material('m', val=[1.])

    #Define element integrals
    integral = Integral('i', order=3)

    #Equations defining
    t1 = Term.new('dw_laplace( v, u )', integral, omega, v=v, u=u)
    eq = Equation('balance', t1)
    eqs = Equations([eq])

    heatBoundary = boundaryConditions
    points = boundaryPoints

    #Boundary conditions
    c = ClosestPointStupid(points, heatBoundary, meshVTK)

    def u_fun(ts, coors, bc=None, problem=None, c=c):
        c.distances = []
        v = np.zeros(len(coors))
        for i, p in enumerate(coors):
            v[i] = c.interpolate(p)
            #c.findClosestPoint(p)
        return v

    bc_fun = Function('u_fun', u_fun)
    fix1 = EssentialBC('fix_u', boundary, {'u.all': bc_fun})

    #Solve problem
    ls = ScipyDirect({})
    nls = Newton({}, lin_solver=ls)

    pb = Problem('heat', equations=eqs)
    pb.set_bcs(ebcs=Conditions([fix1]))

    pb.set_solver(nls)
    state = pb.solve(verbose=False, save_results=False)
    u = state.get_parts()['u']
    return u
Exemplo n.º 10
0
    def test_boundary_fluxes(self):
        import os.path as op
        from sfepy.linalg import rotation_matrix2d
        from sfepy.discrete.evaluate import BasicEvaluator
        from sfepy.discrete import Material
        problem = self.problem

        angles = [0, 30, 45]
        region_names = ['Left', 'Right', 'Gamma']
        values = [5.0, -5.0, 0.0]

        variables = problem.get_variables()
        get_state = variables.get_state_part_view
        state = self.state.copy(deep=True)

        problem.time_update(ebcs={}, epbcs={})
        #        problem.save_ebc( 'aux.vtk' )

        state.apply_ebc()
        ev = BasicEvaluator(problem)
        aux = ev.eval_residual(state())

        field = variables['t'].field

        conf_m = problem.conf.get_item_by_name('materials', 'm')
        m = Material.from_conf(conf_m, problem.functions)

        name = op.join(self.options.out_dir,
                       op.split(problem.domain.mesh.name)[1] + '_%02d.mesh')

        orig_coors = problem.get_mesh_coors().copy()
        ok = True
        for ia, angle in enumerate(angles):
            self.report('%d: mesh rotation %d degrees' % (ia, angle))
            problem.domain.mesh.transform_coors(rotation_matrix2d(angle),
                                                ref_coors=orig_coors)
            problem.set_mesh_coors(problem.domain.mesh.coors,
                                   update_fields=True)
            problem.domain.mesh.write(name % angle, io='auto')
            for ii, region_name in enumerate(region_names):
                flux_term = 'd_surface_flux.i.%s( m.K, t )' % region_name
                val1 = problem.evaluate(flux_term, t=variables['t'], m=m)

                rvec = get_state(aux, 't', True)
                reg = problem.domain.regions[region_name]
                nods = field.get_dofs_in_region(reg, merge=True)
                val2 = rvec[nods].sum()  # Assume 1 dof per node.

                ok = ok and ((abs(val1 - values[ii]) < 1e-10) and
                             (abs(val2 - values[ii]) < 1e-10))
                self.report( '  %d. %s: %e == %e == %e'\
                             % (ii, region_name, val1, val2, values[ii]) )

        # Restore original coordinates.
        problem.domain.mesh.transform_coors(rotation_matrix2d(0),
                                            ref_coors=orig_coors)
        problem.set_mesh_coors(problem.domain.mesh.coors, update_fields=True)

        return ok
Exemplo n.º 11
0
def make_h1_projection_data(target, eval_data):
    """
    Project scalar data given by a material-like `eval_data()` function to a
    scalar `target` field variable using the :math:`H^1` dot product.
    """
    order = target.field.approx_order * 2
    integral = Integral('i', order=order)

    un = target.name
    v = FieldVariable('v', 'test', target.field, primary_var_name=un)
    lhs1 = Term.new('dw_volume_dot(v, %s)' % un,
                    integral,
                    target.field.region,
                    v=v,
                    **{un: target})
    lhs2 = Term.new('dw_laplace(v, %s)' % un,
                    integral,
                    target.field.region,
                    v=v,
                    **{un: target})

    def _eval_data(ts, coors, mode, **kwargs):
        if mode == 'qp':
            val = eval_data(ts, coors, mode, 'val', **kwargs)
            gval = eval_data(ts, coors, mode, 'grad', **kwargs)
            return {'val': val, 'gval': gval}

    m = Material('m', function=_eval_data)
    rhs1 = Term.new('dw_volume_lvf(m.val, v)',
                    integral,
                    target.field.region,
                    m=m,
                    v=v)
    rhs2 = Term.new('dw_diffusion_r(m.gval, v)',
                    integral,
                    target.field.region,
                    m=m,
                    v=v)

    eq = Equation('projection', lhs1 + lhs2 - rhs1 - rhs2)
    eqs = Equations([eq])

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('aux', equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the target variable with the projection solution.
    pb.solve()

    if nls_status.condition != 0:
        output('H1 projection: solver did not converge!')
Exemplo n.º 12
0
    def prepare_materials(self, field, velo=1.0, diffusion=0.1, penalty=100):
        """
        Crates material objects with data attribute, containing properly shaped
        data to pass to terms

        :param field: DGField
        :param velo: optional values for velocity a
        :param diffusion: optional value for diffusion tensor D
        :param penalty: optional value for diffusion penalty Cw
        :return: a, D, Cw
        """

        a = Material('a', val=[velo])
        a.data = nm.ones((field.n_cell, 1)) * velo

        D = Material('D', val=[diffusion])
        D.data = nm.ones((field.n_cell, 1, 1)) * diffusion

        Cw = Material("Cw", values={".val": penalty})
        Cw.data = penalty

        return a, D, Cw
Exemplo n.º 13
0
def get_material(calc_stiffness, calc_prestress):
    """Get the material

    Args:
      calc_stiffness: the function for calculating the stiffness tensor
      calc_prestress: the function for calculating the prestress

    Returns:
      the material
    """

    def _material_func_(_, coors, mode=None, **__):
        if mode == "qp":
            return dict(D=calc_stiffness(coors), stress=calc_prestress(coors))
        return None

    return Material("m", function=Function("material_func", _material_func_))
Exemplo n.º 14
0
def _get_material(property_array, domain, delta_x):
    """
    Creates an SfePy material from the material property fields for the
    quadrature points.

    Args:
      property_array: array of the properties with shape (n_x, n_y, n_z, 2)
      domain: the Sfepy domain
      delta_x: the grid spacing

    Returns:
      a SfePy material

    """
    reshape = lambda x: np.ascontiguousarray(x.reshape((x.shape[0], 1, 1)))

    def _material_func_(_, coors, mode=None, **__):
        if mode == "qp":
            return pipe(
                np.empty_like(coors, dtype=int),
                lambda x: np.floor(
                    (coors - domain.get_mesh_bounding_box()[0][None]) /
                    delta_x,
                    x,
                    casting="unsafe",
                ),
                lambda x: x.swapaxes(0, 1),
                tuple,
                lambda x: property_array[x],
                lambda x: dict(
                    lam=reshape(x[..., 0]),
                    mu=reshape(x[..., 1]),
                    D=stiffness_from_lame(
                        domain.get_mesh_bounding_box().shape[1],
                        lam=x[..., 0],
                        mu=x[..., 1],
                    ),
                ),
            )
        return None

    return Material("m", function=Function("material_func", _material_func_))
Exemplo n.º 15
0
    def __init__(self, dim, approx_order, **kwargs):
        """
        Creates Struct object with all the data necessary to test terms

        :param dim: dimension
        :param approx_order: approximation order
        :param kwargs: velo, diffusion or penalty for prepare_materials
        :return: term test scope
        """

        if dim == 1:
            (field, regions), mesh = prepare_dgfield_1D(approx_order)
        elif dim == 2:
            (field, regions), mesh = prepare_field_2D(approx_order)

        self.field = field
        self.regions = regions
        self.mesh = mesh

        self.n_cell = field.n_cell
        self.n_nod = field.n_nod
        self.n_el_nod = field.n_el_nod

        self.u, self.v = self.prepare_variables(field)
        self.u.data = [(nm.zeros(self.n_nod))]
        self.variables = Variables([ self.u, self.v])

        self.integral = Integral('i', order=approx_order * 2)
        self.a, self.D, self.Cw = self.prepare_materials(field, **kwargs)

        if dim == 1:
            velo = nm.array(1.0)
        elif dim == 2:
            velo = nm.array([1.0, 0])

        self.burg_velo = velo.T / nm.linalg.norm(velo)

        self.nonlin = Material('nonlin',
                               values={'.fun': self.burg_fun,
                                       '.dfun': self.burg_fun_d})

        self.out = nm.zeros((self.n_cell, 1, self.n_el_nod, 1))
Exemplo n.º 16
0
    def test_boundary_fluxes(self):
        from sfepy.discrete.evaluate import BasicEvaluator
        from sfepy.discrete import Material
        problem = self.problem

        region_names = ['Gamma']

        variables = problem.get_variables()
        get_state = variables.get_state_part_view
        state = self.state.copy(deep=True)

        problem.time_update(ebcs={}, epbcs={})
        ## problem.save_ebc( 'aux.vtk' )

        state.apply_ebc()
        ev = BasicEvaluator(problem)
        aux = ev.eval_residual(state())

        field = variables['t'].field

        conf_m = problem.conf.get_item_by_name('materials', 'm')
        m = Material.from_conf(conf_m, problem.functions)

        ok = True
        for ii, region_name in enumerate(region_names):
            flux_term = 'd_surface_flux.1.%s( m.K, t )' % region_name
            val1 = problem.evaluate(flux_term, t=variables['t'], m=m)

            rvec = get_state(aux, 't', True)
            reg = problem.domain.regions[region_name]
            nods = field.get_dofs_in_region(reg, merge=True)
            val2 = rvec[nods].sum()  # Assume 1 dof per node.

            eps = 1e-2
            ok = ok and ((abs(val1 - val2) < eps))
            self.report( '%d. %s: |%e - %e| = %e < %.2e'\
                         % (ii, region_name, val1, val2, abs( val1 - val2 ),
                            eps) )

        return ok
Exemplo n.º 17
0
    def test_boundary_fluxes( self ):
        from sfepy.discrete.evaluate import BasicEvaluator
        from sfepy.discrete import Material
        problem = self.problem

        region_names = ['Gamma']

        variables = problem.get_variables()
        get_state = variables.get_state_part_view
        state = self.state.copy(deep=True)

        problem.time_update(ebcs={}, epbcs={})
        ## problem.save_ebc( 'aux.vtk' )

        state.apply_ebc()
        ev = BasicEvaluator( problem )
        aux = ev.eval_residual(state())

        field = variables['t'].field

        conf_m = problem.conf.get_item_by_name('materials', 'm')
        m = Material.from_conf(conf_m, problem.functions)

        ok = True
        for ii, region_name in enumerate( region_names ):
            flux_term = 'd_surface_flux.1.%s( m.K, t )' % region_name
            val1 = problem.evaluate(flux_term, t=variables['t'], m=m)

            rvec = get_state( aux, 't', True )
            reg = problem.domain.regions[region_name]
            nods = field.get_dofs_in_region(reg, merge=True)
            val2 = rvec[nods].sum() # Assume 1 dof per node.

            eps = 1e-2
            ok = ok and ((abs( val1 - val2 ) < eps))
            self.report( '%d. %s: |%e - %e| = %e < %.2e'\
                         % (ii, region_name, val1, val2, abs( val1 - val2 ),
                            eps) )

        return ok
Exemplo n.º 18
0
def compute_erros(analytic_fun, pb):
    """
    Compute errors from analytical solution in conf.sol_fun and numerical
    solution saved in pb
    :param analytic_fun: analytic solution
    :param pb: problem with numerical solution
    :return: analytic_fun L2 norm,
             vaules of analytic_fun in qps
             L2 norm of difference between analytic and numerical solution
             relative difference
             values of numerical solution in qps
    """
    idiff = Integral('idiff', 20)
    num_qp = pb.evaluate('ev_volume_integrate.idiff.Omega(p)',
                         integrals=Integrals([idiff]),
                         mode='qp',
                         copy_materials=False,
                         verbose=False)
    aux = Material('aux', function=analytic_fun)
    ana_qp = pb.evaluate('ev_volume_integrate_mat.idiff.Omega(aux.p, p)',
                         aux=aux,
                         integrals=Integrals([idiff]),
                         mode='qp',
                         copy_materials=False,
                         verbose=False)
    field = pb.fields['f']
    det = get_jacobian(field, idiff)
    diff_l2 = nm.sqrt((((num_qp - ana_qp)**2) * det).sum())
    ana_l2 = nm.sqrt(((ana_qp**2) * det).sum())
    rel_l2 = diff_l2 / ana_l2

    diff_loo = nm.max(num_qp - ana_qp)
    ana_loo = nm.max(ana_qp)
    rel_loo = diff_loo / ana_loo

    diff_l1 = nm.sqrt((nm.abs(num_qp - ana_qp) * det).sum())
    ana_l1 = nm.sqrt((nm.abs(ana_qp) * det).sum())
    rel_l1 = diff_l2 / ana_l2
    return ana_l2, ana_qp, diff_l2, rel_l2, num_qp
Exemplo n.º 19
0
def linear_projection(pb, cval):
    from sfepy.discrete import (FieldVariable, Material, Integral, Equation,
                                Equations, Problem)
    from sfepy.discrete.fem import Mesh, FEDomain, Field
    from sfepy.terms import Term
    from sfepy.solvers.ls import ScipyDirect
    from sfepy.solvers.nls import Newton
    from sfepy.base.base import IndexedStruct

    mesh = Mesh.from_file(pb.conf.filename_mesh)
    domain = FEDomain('domain', mesh)
    omega = domain.create_region('Omega', 'all')
    field = Field.from_args('scf', nm.float64, 'scalar', omega, approx_order=1)

    g = FieldVariable('g', 'unknown', field)
    f = FieldVariable('f', 'test', field, primary_var_name='g')

    integral = Integral('i', order=2)
    m = Material('m', function=set_grad)

    t1 = Term.new('dw_volume_dot(f, g)', integral, omega, f=f, g=g)
    t2 = Term.new('dw_volume_lvf(m.cs, f)', integral, omega, m=m, f=f)
    eq = Equation('balance', t1 - t2)
    eqs = Equations([eq])
    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({'eps_a': 1e-15}, lin_solver=ls, status=nls_status)
    pb = Problem('elasticity', equations=eqs)
    pb.set_solver(nls)

    out = nm.empty((g.n_dof, cval.shape[2]), dtype=nm.float64)
    for ii in range(cval.shape[2]):
        pb.data = nm.ascontiguousarray(cval[:, :, ii, :])
        pb.time_update()
        state = pb.solve()
        out[:, ii] = state.get_parts()['g']

    return out
Exemplo n.º 20
0
def create_local_problem(omega_gi, orders):
    """
    Local problem definition using a domain corresponding to the global region
    `omega_gi`.
    """
    order_u, order_p = orders

    mesh = omega_gi.domain.mesh

    # All tasks have the whole mesh.
    bbox = mesh.get_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps_x = 1e-8 * (max_x - min_x)

    min_y, max_y = bbox[:, 1]
    eps_y = 1e-8 * (max_y - min_y)

    mesh_i = Mesh.from_region(omega_gi, mesh, localize=True)
    domain_i = FEDomain('domain_i', mesh_i)
    omega_i = domain_i.create_region('Omega', 'all')

    gamma1_i = domain_i.create_region('Gamma1',
                                      'vertices in (x < %.10f)'
                                      % (min_x + eps_x),
                                      'facet', allow_empty=True)
    gamma2_i = domain_i.create_region('Gamma2',
                                      'vertices in (x > %.10f)'
                                      % (max_x - eps_x),
                                      'facet', allow_empty=True)
    gamma3_i = domain_i.create_region('Gamma3',
                                      'vertices in (y < %.10f)'
                                      % (min_y + eps_y),
                                      'facet', allow_empty=True)

    field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i,
                               approx_order=order_u)

    field2_i = Field.from_args('fp', nm.float64, 1, omega_i,
                               approx_order=order_p)

    output('field 1: number of local DOFs:', field1_i.n_nod)
    output('field 2: number of local DOFs:', field2_i.n_nod)

    u_i = FieldVariable('u_i', 'unknown', field1_i, order=0)
    v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i')
    p_i = FieldVariable('p_i', 'unknown', field2_i, order=1)
    q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i')

    if mesh.dim == 2:
        alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]])

    else:
        alpha = 1e2 * nm.array([[0.132], [0.132], [0.132],
                                [0.092], [0.092], [0.092]])

    mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5),
                   k=1, alpha=alpha)
    integral = Integral('i', order=2*(max(order_u, order_p)))

    t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)',
                   integral, omega_i, m=mat, v_i=v_i, u_i=u_i)
    t12 = Term.new('dw_biot(m.alpha, v_i, p_i)',
                   integral, omega_i, m=mat, v_i=v_i, p_i=p_i)
    t21 = Term.new('dw_biot(m.alpha, u_i, q_i)',
                   integral, omega_i, m=mat, u_i=u_i, q_i=q_i)
    t22 = Term.new('dw_laplace(m.k, q_i, p_i)',
                   integral, omega_i, m=mat, q_i=q_i, p_i=p_i)

    eq1 = Equation('eq1', t11 - t12)
    eq2 = Equation('eq1', t21 + t22)
    eqs = Equations([eq1, eq2])

    ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0})
    ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05})
    def bc_fun(ts, coors, **kwargs):
        val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x))
        return val

    fun = Function('bc_fun', bc_fun)
    ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun})

    pb = Problem('problem_i', equations=eqs, active_only=False)
    pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3]))
    pb.update_materials()

    return pb
Exemplo n.º 21
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-s',
                      '--show',
                      action="store_true",
                      dest='show',
                      default=False,
                      help=help['show'])
    options, args = parser.parse_args()

    mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')
    domain = FEDomain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Gamma1',
                                  'vertices in x < %.10f' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Gamma2',
                                  'vertices in x > %.10f' % (max_x - eps),
                                  'facet')

    field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    m = Material('m', D=stiffness_from_lame(dim=2, lam=1.0, mu=1.0))
    f = Material('f', val=[[0.02], [0.01]])

    integral = Integral('i', order=3)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all': 0.0})

    bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift': 0.01})
    shift_u = EssentialBC('shift_u', gamma2, {'u.0': bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups('regions')

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print(nls_status)

    pb.save_state('linear_elasticity.vtk', vec)

    if options.show:
        view = Viewer('linear_elasticity.vtk')
        view(vector_mode='warp_norm',
             rel_scaling=2,
             is_scalar_bar=True,
             is_wireframe=True)
Exemplo n.º 22
0
def make_term_args(arg_shapes,
                   arg_kinds,
                   arg_types,
                   ats_mode,
                   domain,
                   material_value=None,
                   poly_space_base=None):
    from sfepy.base.base import basestr
    from sfepy.discrete import FieldVariable, Material, Variables, Materials
    from sfepy.discrete.fem import Field
    from sfepy.solvers.ts import TimeStepper
    from sfepy.mechanics.tensors import dim2sym

    omega = domain.regions['Omega']
    dim = domain.shape.dim
    sym = dim2sym(dim)

    def _parse_scalar_shape(sh):
        if isinstance(sh, basestr):
            if sh == 'D':
                return dim

            elif sh == 'S':
                return sym

            elif sh == 'N':  # General number ;)
                return 1

            else:
                return int(sh)

        else:
            return sh

    def _parse_tuple_shape(sh):
        if isinstance(sh, basestr):
            return [_parse_scalar_shape(ii.strip()) for ii in sh.split(',')]

        else:
            return (int(sh), )

    args = {}
    str_args = []
    materials = []
    variables = []
    for ii, arg_kind in enumerate(arg_kinds):
        if arg_kind != 'ts':
            if ats_mode is not None:
                extended_ats = arg_types[ii] + ('/%s' % ats_mode)

            else:
                extended_ats = arg_types[ii]

            try:
                sh = arg_shapes[arg_types[ii]]

            except KeyError:
                sh = arg_shapes[extended_ats]

        if arg_kind.endswith('variable'):
            shape = _parse_scalar_shape(sh[0] if isinstance(sh, tuple) else sh)
            field = Field.from_args('f%d' % ii,
                                    nm.float64,
                                    shape,
                                    omega,
                                    approx_order=1,
                                    poly_space_base=poly_space_base)

            if arg_kind == 'virtual_variable':
                if sh[1] is not None:
                    istate = arg_types.index(sh[1])

                else:
                    # Only virtual variable in arguments.
                    istate = -1
                    # -> Make fake variable.
                    var = FieldVariable('u-1', 'unknown', field)
                    var.set_constant(0.0)
                    variables.append(var)

                var = FieldVariable('v',
                                    'test',
                                    field,
                                    primary_var_name='u%d' % istate)

            elif arg_kind == 'state_variable':
                var = FieldVariable('u%d' % ii, 'unknown', field)
                var.set_constant(0.0)

            elif arg_kind == 'parameter_variable':
                var = FieldVariable('p%d' % ii,
                                    'parameter',
                                    field,
                                    primary_var_name='(set-to-None)')
                var.set_constant(0.0)

            variables.append(var)
            str_args.append(var.name)
            args[var.name] = var

        elif arg_kind.endswith('material'):
            if sh is None:  # Switched-off opt_material.
                continue

            prefix = ''
            if isinstance(sh, basestr):
                aux = sh.split(':')
                if len(aux) == 2:
                    prefix, sh = aux

            if material_value is None:
                material_value = 1.0

            shape = _parse_tuple_shape(sh)
            if (len(shape) > 1) or (shape[0] > 1):
                if ((len(shape) == 2) and (shape[0] == shape[1])
                        and (material_value != 0.0)):
                    # Identity matrix.
                    val = nm.eye(shape[0], dtype=nm.float64)

                else:
                    # Array.
                    val = nm.empty(shape, dtype=nm.float64)
                    val.fill(material_value)

                values = {'%sc%d' % (prefix, ii): val}

            elif (len(shape) == 1) and (shape[0] == 1):
                # Single scalar as a special value.
                values = {'.c%d' % ii: material_value}

            else:
                raise ValueError('wrong material shape! (%s)' % shape)

            mat = Material('m%d' % ii, values=values)

            materials.append(mat)
            str_args.append(mat.name + '.' + 'c%d' % ii)
            args[mat.name] = mat

        elif arg_kind == 'ts':
            ts = TimeStepper(0.0, 1.0, 1.0, 5)
            str_args.append('ts')
            args['ts'] = ts

        else:
            str_args.append('user%d' % ii)
            args[str_args[-1]] = None

    materials = Materials(materials)
    variables = Variables(variables)

    return args, str_args, materials, variables
Exemplo n.º 23
0
min_z, max_z = domain.get_mesh_bounding_box()[:, 2]
eps = 1e-4 * (max_z - min_z)
omega = domain.create_region('Omega', 'all')
bot = domain.create_region('Bot', 'vertices in z < %.10f' % (min_z + eps),
                           'vertex')
top = domain.create_region('Top', 'vertices in z > %.10f' % (max_z - eps),
                           'vertex')

field = Field.from_args('fu', np.float64, 'vector', omega, approx_order=1)

u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')

m = Material('m',
             D=stiffness_from_youngpoisson(dim=3, young=6.8e10, poisson=0.36),
             rho=2700.0)

integral = Integral('i', order=1)

t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
eq1 = Equation('balance_of_forces', t1)
eqs = Equations([eq1])

z_displacements = np.linspace(0, 0.05, 6)
vm_stresses = np.zeros([len(z_displacements), 2])
for i, z_displacement in enumerate(z_displacements):

    fix_bot = EssentialBC('fix_bot', bot, {'u.all': 0.0})
    fix_top = EssentialBC('fix_top', top, {
        'u.[0,1]': 0.0,
def main():
    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-d',
                        '--dims',
                        metavar='dims',
                        action='store',
                        dest='dims',
                        default='[1.0, 1.0]',
                        help=helps['dims'])
    parser.add_argument('-c',
                        '--centre',
                        metavar='centre',
                        action='store',
                        dest='centre',
                        default='[0.0, 0.0]',
                        help=helps['centre'])
    parser.add_argument('-s',
                        '--shape',
                        metavar='shape',
                        action='store',
                        dest='shape',
                        default='[11, 11]',
                        help=helps['shape'])
    parser.add_argument('-b',
                        '--bc-kind',
                        metavar='kind',
                        action='store',
                        dest='bc_kind',
                        choices=['free', 'cantilever', 'fixed'],
                        default='free',
                        help=helps['bc_kind'])
    parser.add_argument('-a',
                        '--axis',
                        metavar='0, ..., dim, or -1',
                        type=int,
                        action='store',
                        dest='axis',
                        default=-1,
                        help=helps['axis'])
    parser.add_argument('--young',
                        metavar='float',
                        type=float,
                        action='store',
                        dest='young',
                        default=200e+9,
                        help=helps['young'])
    parser.add_argument('--poisson',
                        metavar='float',
                        type=float,
                        action='store',
                        dest='poisson',
                        default=0.3,
                        help=helps['poisson'])
    parser.add_argument('--density',
                        metavar='float',
                        type=float,
                        action='store',
                        dest='density',
                        default=7800.0,
                        help=helps['density'])
    parser.add_argument('--order',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='order',
                        default=1,
                        help=helps['order'])
    parser.add_argument('-n',
                        '--n-eigs',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='n_eigs',
                        default=6,
                        help=helps['n_eigs'])
    parser.add_argument('-i',
                        '--ignore',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='ignore',
                        default=None,
                        help=helps['ignore'])
    parser.add_argument('--solver', metavar='solver', action='store',
                        dest='solver',
                        default= \
                        "eig.scipy,method:'eigh',tol:1e-5,maxiter:1000",
                        help=helps['solver'])
    parser.add_argument('--show',
                        action="store_true",
                        dest='show',
                        default=False,
                        help=helps['show'])
    #parser.add_argument('filename', nargs='?', default=None)
    #read block.mesh
    #parser.add_argument('filename', nargs='?', default="platehexat200mm.mesh")
    parser.add_argument('filename', nargs='?', default="block_1m.mesh")
    options = parser.parse_args()

    aux = options.solver.split(',')
    kwargs = {}
    for option in aux[1:]:
        key, val = option.split(':')
        kwargs[key.strip()] = eval(val)
    eig_conf = Struct(name='evp', kind=aux[0], **kwargs)

    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  density:', options.density)
    output('displacement field approximation order:', options.order)
    output('requested %d eigenvalues' % options.n_eigs)
    output('using eigenvalue problem solver:', eig_conf.kind)
    output.level += 1
    for key, val in six.iteritems(kwargs):
        output('%s: %r' % (key, val))
    output.level -= 1

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    filename = options.filename
    if filename is not None:
        mesh = Mesh.from_file(filename)
        dim = mesh.dim
        dims = nm.diff(mesh.get_bounding_box(), axis=0)

    else:
        dims = nm.array(eval(options.dims), dtype=nm.float64)
        dim = len(dims)

        centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]
        shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]

        output('dimensions:', dims)
        output('centre:    ', centre)
        output('shape:     ', shape)

        mesh = gen_block_mesh(dims, shape, centre, name='mesh')

    output('axis:      ', options.axis)
    assert_((-dim <= options.axis < dim), 'invalid axis value!')

    eig_solver = Solver.any_from_conf(eig_conf)

    # Build the problem definition.
    domain = FEDomain('domain', mesh)

    bbox = domain.get_mesh_bounding_box()
    min_coor, max_coor = bbox[:, options.axis]
    eps = 1e-8 * (max_coor - min_coor)
    ax = 'xyz'[:dim][options.axis]

    omega = domain.create_region('Omega', 'all')
    """
    bottom = domain.create_region('Bottom',
                                  'vertices in (%s < %.10f)'
                                  % (ax, min_coor + eps),
                                  'facet')

    bottom_top = domain.create_region('BottomTop',
                                      'r.Bottom +v vertices in (%s > %.10f)'
                                      % (ax, max_coor - eps),
                                      'facet')
    """
    #import pdb; pdb.set_trace()
    left = domain.create_region('left', 'vertices in (x < -0.49)', 'facet')

    field = Field.from_args('fu',
                            nm.float64,
                            'vector',
                            omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    mtx_d = stiffness_from_youngpoisson(dim, options.young, options.poisson)

    m = Material('m', D=mtx_d, rho=options.density)

    integral = Integral('i', order=2 * options.order)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations=lhs_eqs)
    """
    if options.bc_kind == 'free':
        pb.time_update()
        n_rbm = dim * (dim + 1) // 2

    elif options.bc_kind == 'cantilever':
        fixed = EssentialBC('Fixed', bottom, {'u.all' : 0.0})
        pb.time_update(ebcs=Conditions([fixed]))
        n_rbm = 0

    elif options.bc_kind == 'fixed':
        fixed = EssentialBC('Fixed', bottom_top, {'u.all' : 0.0})
        pb.time_update(ebcs=Conditions([fixed]))
        n_rbm = 0

    else:
        raise ValueError('unsupported BC kind! (%s)' % options.bc_kind)

    if options.ignore is not None:
        n_rbm = options.ignore
    """
    fixed = EssentialBC('Fixed', left, {'u.all': 0.0})
    pb.time_update(ebcs=Conditions([fixed]))
    n_rbm = 0

    pb.update_materials()

    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    try:
        eigs, svecs = eig_solver(mtx_k,
                                 mtx_m,
                                 options.n_eigs + n_rbm,
                                 eigenvectors=True)

    except sla.ArpackNoConvergence as ee:
        eigs = ee.eigenvalues
        svecs = ee.eigenvectors
        output('only %d eigenvalues converged!' % len(eigs))

    output('%d eigenvalues converged (%d ignored as rigid body modes)' %
           (len(eigs), n_rbm))

    eigs = eigs[n_rbm:]
    svecs = svecs[:, n_rbm:]

    omegas = nm.sqrt(eigs)
    freqs = omegas / (2 * nm.pi)

    output('number |         eigenvalue |  angular frequency '
           '|          frequency')
    for ii, eig in enumerate(eigs):
        output('%6d | %17.12e | %17.12e | %17.12e' %
               (ii + 1, eig, omegas[ii], freqs[ii]))

    # Make full eigenvectors (add DOFs fixed by boundary conditions).
    variables = pb.get_variables()

    vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]), dtype=nm.float64)
    for ii in range(svecs.shape[1]):
        vecs[:, ii] = variables.make_full_vec(svecs[:, ii])

    # Save the eigenvectors.
    out = {}
    state = pb.create_state()
    for ii in range(eigs.shape[0]):
        state.set_full(vecs[:, ii])
        aux = state.create_output_dict()
        strain = pb.evaluate('ev_cauchy_strain.i.Omega(u)',
                             integrals=Integrals([integral]),
                             mode='el_avg',
                             verbose=False)
        out['u%03d' % ii] = aux.popitem()[1]
        out['strain%03d' % ii] = Struct(mode='cell', data=strain)

    pb.save_state('eigenshapes.vtk', out=out)
    pb.save_regions_as_groups('regions')

    if len(eigs) and options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer
        from sfepy.postprocess.domain_specific import DomainSpecificPlot

        scaling = 0.05 * dims.max() / nm.abs(vecs).max()

        ds = {}
        for ii in range(eigs.shape[0]):
            pd = DomainSpecificPlot('plot_displacements', [
                'rel_scaling=%s' % scaling, 'color_kind="tensors"',
                'color_name="strain%03d"' % ii
            ])
            ds['u%03d' % ii] = pd

        view = Viewer('eigenshapes.vtk')
        view(domain_specific=ds,
             only_names=sorted(ds.keys()),
             is_scalar_bar=False,
             is_wireframe=True)
Exemplo n.º 25
0
def main():
    parser = ArgumentParser(description=__doc__)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-b',
                        '--basis',
                        metavar='name',
                        action='store',
                        dest='basis',
                        default='lagrange',
                        help=help['basis'])
    parser.add_argument('-n',
                        '--max-order',
                        metavar='order',
                        type=int,
                        action='store',
                        dest='max_order',
                        default=10,
                        help=help['max_order'])
    parser.add_argument('-m',
                        '--matrix',
                        metavar='type',
                        action='store',
                        dest='matrix_type',
                        default='laplace',
                        help=help['matrix_type'])
    parser.add_argument('-g',
                        '--geometry',
                        metavar='name',
                        action='store',
                        dest='geometry',
                        default='2_4',
                        help=help['geometry'])
    options = parser.parse_args()

    dim, n_ep = int(options.geometry[0]), int(options.geometry[2])
    output('reference element geometry:')
    output('  dimension: %d, vertices: %d' % (dim, n_ep))

    n_c = {'laplace': 1, 'elasticity': dim}[options.matrix_type]

    output('matrix type:', options.matrix_type)
    output('number of variable components:', n_c)

    output('polynomial space:', options.basis)

    output('max. order:', options.max_order)

    mesh = Mesh.from_file(data_dir +
                          '/meshes/elements/%s_1.mesh' % options.geometry)
    domain = FEDomain('domain', mesh)
    omega = domain.create_region('Omega', 'all')

    orders = nm.arange(1, options.max_order + 1, dtype=nm.int)
    conds = []

    order_fix = 0 if options.geometry in ['2_4', '3_8'] else 1

    for order in orders:
        output('order:', order, '...')

        field = Field.from_args('fu',
                                nm.float64,
                                n_c,
                                omega,
                                approx_order=order,
                                space='H1',
                                poly_space_base=options.basis)

        to = field.approx_order
        quad_order = 2 * (max(to - order_fix, 0))
        output('quadrature order:', quad_order)

        integral = Integral('i', order=quad_order)
        qp, _ = integral.get_qp(options.geometry)
        output('number of quadrature points:', qp.shape[0])

        u = FieldVariable('u', 'unknown', field)
        v = FieldVariable('v', 'test', field, primary_var_name='u')

        m = Material('m', D=stiffness_from_lame(dim, 1.0, 1.0), mu=1.0)

        if options.matrix_type == 'laplace':
            term = Term.new('dw_laplace(m.mu, v, u)',
                            integral,
                            omega,
                            m=m,
                            v=v,
                            u=u)
            n_zero = 1

        else:
            assert_(options.matrix_type == 'elasticity')
            term = Term.new('dw_lin_elastic(m.D, v, u)',
                            integral,
                            omega,
                            m=m,
                            v=v,
                            u=u)
            n_zero = (dim + 1) * dim / 2

        term.setup()

        output('assembling...')
        tt = time.clock()
        mtx, iels = term.evaluate(mode='weak', diff_var='u')
        output('...done in %.2f s' % (time.clock() - tt))
        mtx = mtx[0, 0]

        try:
            assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10)

        except:
            from sfepy.base.base import debug
            debug()

        output('matrix shape:', mtx.shape)

        eigs = eig(mtx, method='eig.sgscipy', eigenvectors=False)
        eigs.sort()

        # Zero 'true' zeros.
        eigs[:n_zero] = 0.0

        ii = nm.where(eigs < 0.0)[0]
        if len(ii):
            output('matrix is not positive semi-definite!')

        ii = nm.where(eigs[n_zero:] < 1e-12)[0]
        if len(ii):
            output('matrix has more than %d zero eigenvalues!' % n_zero)

        output('smallest eigs:\n', eigs[:10])

        ii = nm.where(eigs > 0.0)[0]
        emin, emax = eigs[ii[[0, -1]]]

        output('min:', emin, 'max:', emax)

        cond = emax / emin
        conds.append(cond)

        output('condition number:', cond)

        output('...done')

    plt.figure(1)
    plt.semilogy(orders, conds)
    plt.xticks(orders, orders)
    plt.xlabel('polynomial order')
    plt.ylabel('condition number')
    plt.grid()

    plt.figure(2)
    plt.loglog(orders, conds)
    plt.xticks(orders, orders)
    plt.xlabel('polynomial order')
    plt.ylabel('condition number')
    plt.grid()

    plt.show()
Exemplo n.º 26
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('--diffusivity',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='diffusivity',
                      default=1e-5,
                      help=helps['diffusivity'])
    parser.add_option('--ic-max',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='ic_max',
                      default=2.0,
                      help=helps['ic_max'])
    parser.add_option('--order',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='order',
                      default=2,
                      help=helps['order'])
    parser.add_option('-r',
                      '--refine',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='refine',
                      default=0,
                      help=helps['refine'])
    parser.add_option('-p',
                      '--probe',
                      action="store_true",
                      dest='probe',
                      default=False,
                      help=helps['probe'])
    parser.add_option('-s',
                      '--show',
                      action="store_true",
                      dest='show',
                      default=False,
                      help=helps['show'])
    options, args = parser.parse_args()

    assert_((0 < options.order),
            'temperature approximation order must be at least 1!')

    output('using values:')
    output('  diffusivity:', options.diffusivity)
    output('  max. IC value:', options.ic_max)
    output('uniform mesh refinement level:', options.refine)

    mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh')
    domain = FEDomain('domain', mesh)

    if options.refine > 0:
        for ii in xrange(options.refine):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements' %
                   (domain.shape.n_nod, domain.shape.n_el))

    omega = domain.create_region('Omega', 'all')
    left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet')
    right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet')

    field = Field.from_args('fu',
                            nm.float64,
                            'scalar',
                            omega,
                            approx_order=options.order)

    T = FieldVariable('T', 'unknown', field, history=1)
    s = FieldVariable('s', 'test', field, primary_var_name='T')

    m = Material('m', diffusivity=options.diffusivity * nm.eye(3))

    integral = Integral('i', order=2 * options.order)

    t1 = Term.new('dw_diffusion(m.diffusivity, s, T)',
                  integral,
                  omega,
                  m=m,
                  s=s,
                  T=T)
    t2 = Term.new('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    # Boundary conditions.
    ebc1 = EssentialBC('T1', left, {'T.0': 2.0})
    ebc2 = EssentialBC('T2', right, {'T.0': -2.0})

    # Initial conditions.
    def get_ic(coors, ic):
        x, y, z = coors.T
        return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1)

    ic_fun = Function('ic_fun', get_ic)
    ic = InitialCondition('ic', omega, {'T.0': ic_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({'is_linear': True}, lin_solver=ls, status=nls_status)

    pb = Problem('heat', equations=eqs, nls=nls, ls=ls)
    pb.set_bcs(ebcs=Conditions([ebc1, ebc2]))
    pb.set_ics(Conditions([ic]))

    tss = SimpleTimeSteppingSolver({
        't0': 0.0,
        't1': 100.0,
        'n_step': 11
    },
                                   problem=pb)
    tss.init_time()

    if options.probe:
        # Prepare probe data.
        probes, labels = gen_lines(pb)

        ev = pb.evaluate
        order = 2 * (options.order - 1)

        gfield = Field.from_args('gu',
                                 nm.float64,
                                 'vector',
                                 omega,
                                 approx_order=options.order - 1)
        dvel = FieldVariable('dvel',
                             'parameter',
                             gfield,
                             primary_var_name='(set-to-None)')
        cfield = Field.from_args('gu',
                                 nm.float64,
                                 'scalar',
                                 omega,
                                 approx_order=options.order - 1)
        component = FieldVariable('component',
                                  'parameter',
                                  cfield,
                                  primary_var_name='(set-to-None)')

        nls_options = {'eps_a': 1e-16, 'i_max': 1}

        if options.show:
            plt.ion()

    # Solve the problem using the time stepping solver.
    suffix = tss.ts.suffix
    for step, time, state in tss():
        if options.probe:
            # Probe the solution.
            dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)' %
                         order,
                         copy_materials=False,
                         mode='qp')
            project_by_component(dvel,
                                 dvel_qp,
                                 component,
                                 order,
                                 nls_options=nls_options)

            all_results = []
            for ii, probe in enumerate(probes):
                fig, results = probe_results(ii, T, dvel, probe, labels[ii])

                all_results.append(results)

            plt.tight_layout()
            fig.savefig('time_poisson_interactive_probe_%s.png' %
                        (suffix % step),
                        bbox_inches='tight')

            if options.show:
                plt.draw()

            for ii, results in enumerate(all_results):
                output('probe %d (%s):' % (ii, probes[ii].name))
                output.level += 2
                for key, res in ordered_iteritems(results):
                    output(key + ':')
                    val = res[1]
                    output('  min: %+.2e, mean: %+.2e, max: %+.2e' %
                           (val.min(), val.mean(), val.max()))
                output.level -= 2
def create_local_problem(omega_gi, order):
    """
    Local problem definition using a domain corresponding to the global region
    `omega_gi`.
    """
    mesh = omega_gi.domain.mesh

    # All tasks have the whole mesh.
    bbox = mesh.get_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps_x = 1e-8 * (max_x - min_x)

    mesh_i = Mesh.from_region(omega_gi, mesh, localize=True)
    domain_i = FEDomain('domain_i', mesh_i)
    omega_i = domain_i.create_region('Omega', 'all')

    gamma1_i = domain_i.create_region('Gamma1',
                                      'vertices in (x < %.10f)' %
                                      (min_x + eps_x),
                                      'facet',
                                      allow_empty=True)
    gamma2_i = domain_i.create_region('Gamma2',
                                      'vertices in (x > %.10f)' %
                                      (max_x - eps_x),
                                      'facet',
                                      allow_empty=True)

    field_i = Field.from_args('fu', nm.float64, 1, omega_i, approx_order=order)

    output('number of local field DOFs:', field_i.n_nod)

    u_i = FieldVariable('u_i', 'unknown', field_i)
    v_i = FieldVariable('v_i', 'test', field_i, primary_var_name='u_i')

    integral = Integral('i', order=2 * order)

    mat = Material('m', lam=10, mu=5)
    t1 = Term.new('dw_laplace(m.lam, v_i, u_i)',
                  integral,
                  omega_i,
                  m=mat,
                  v_i=v_i,
                  u_i=u_i)

    def _get_load(coors):
        val = nm.ones_like(coors[:, 0])
        for coor in coors.T:
            val *= nm.sin(4 * nm.pi * coor)
        return val

    def get_load(ts, coors, mode=None, **kwargs):
        if mode == 'qp':
            return {'val': _get_load(coors).reshape(coors.shape[0], 1, 1)}

    load = Material('load', function=Function('get_load', get_load))

    t2 = Term.new('dw_volume_lvf(load.val, v_i)',
                  integral,
                  omega_i,
                  load=load,
                  v_i=v_i)

    eq = Equation('balance', t1 - 100 * t2)
    eqs = Equations([eq])

    ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all': 0.0})
    ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.all': 0.1})

    pb = Problem('problem_i', equations=eqs, active_only=False)
    pb.time_update(ebcs=Conditions([ebc1, ebc2]))
    pb.update_materials()

    return pb
Exemplo n.º 28
0
def make_l2_projection_data(target,
                            eval_data,
                            order=None,
                            ls=None,
                            nls_options=None):
    """
    Project scalar data to a scalar `target` field variable using the
    :math:`L^2` dot product.

    Parameters
    ----------
    target : FieldVariable instance
        The target variable.
    eval_data : callable or array
        Either a material-like function `eval_data()`, or an array of values in
        quadrature points that has to be reshapable to the shape required by
        `order`.
    order : int, optional
        The quadrature order. If not given, it is set to
        `2 * target.field.approx_order`.
    """
    if order is None:
        order = 2 * target.field.approx_order
    integral = Integral('i', order=order)

    un = FieldVariable('u', 'unknown', target.field)

    v = FieldVariable('v', 'test', un.field, primary_var_name=un.name)
    lhs = Term.new('dw_volume_dot(v, %s)' % un.name,
                   integral,
                   un.field.region,
                   v=v,
                   **{un.name: un})

    def _eval_data(ts, coors, mode, **kwargs):
        if mode == 'qp':
            if callable(eval_data):
                val = eval_data(ts, coors, mode, **kwargs)

            else:
                val = eval_data.reshape((coors.shape[0], 1, 1))

            return {'val': val}

    m = Material('m', function=_eval_data)
    rhs = Term.new('dw_volume_lvf(m.val, v)',
                   integral,
                   un.field.region,
                   m=m,
                   v=v)

    eq = Equation('projection', lhs - rhs)
    eqs = Equations([eq])

    if ls is None:
        ls = ScipyDirect({})

    if nls_options is None:
        nls_options = {}

    nls_status = IndexedStruct()
    nls = Newton(nls_options, lin_solver=ls, status=nls_status)

    pb = Problem('aux', equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the un variable with the projection solution.
    pb.solve()

    # Copy the projection solution to target.
    target.set_data(un())

    if nls_status.condition != 0:
        output('L2 projection: solver did not converge!')
Exemplo n.º 29
0
# f = FieldVariable('f', 'parameter', field, {'setter' : get_forcing_term}, primary_var_name='set-to-None')
# self, name, kind, field, order=None, primary_var_name=None,special=None, flags=None, **kwargs):


def get_forcing_term(ts, coors, mode=None, **kwargs):
    if mode == 'qp':
        x = coors[:, 0]
        y = coors[:, 1]
        val = -2 * np.sin(x / np.pi) * np.sin(y / np.pi)
        # val = np.exp(-(x**2+10*y**2))

        val.shape = (coors.shape[0], 1, 1)
        return {'val': val}


c = Material('c', val=1.0)
# bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift' : 0.01})
f = Material('f', function=get_forcing_term)
# f = Material('f', val = 10.0)
# f = Material('f', val=[[10.0],[10.0]])
# f = Material('f', val=[[0],[0]])

integral = Integral('i', order=2)

# t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
#      integral, omega, m=m, v=v, u=u)
# t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
# eq = Equation('balance', t1 + t2)
# eqs = Equations([eq])

t1 = Term.new('dw_laplace( c.val, s, t )', integral, omega, c=c, t=t, s=s)
Exemplo n.º 30
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('--young',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='young',
                      default=2000.0,
                      help=helps['young'])
    parser.add_option('--poisson',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='poisson',
                      default=0.4,
                      help=helps['poisson'])
    parser.add_option('--load',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='load',
                      default=-1000.0,
                      help=helps['load'])
    parser.add_option('--order',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='order',
                      default=1,
                      help=helps['order'])
    parser.add_option('-r',
                      '--refine',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='refine',
                      default=0,
                      help=helps['refine'])
    parser.add_option('-s',
                      '--show',
                      action="store_true",
                      dest='show',
                      default=False,
                      help=helps['show'])
    parser.add_option('-p',
                      '--probe',
                      action="store_true",
                      dest='probe',
                      default=False,
                      help=helps['probe'])
    options, args = parser.parse_args()

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  vertical load:', options.load)
    output('uniform mesh refinement level:', options.refine)

    # Build the problem definition.
    mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
    domain = FEDomain('domain', mesh)

    if options.refine > 0:
        for ii in xrange(options.refine):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements' %
                   (domain.shape.n_nod, domain.shape.n_el))

    omega = domain.create_region('Omega', 'all')
    left = domain.create_region('Left', 'vertices in x < 0.001', 'facet')
    bottom = domain.create_region('Bottom', 'vertices in y < 0.001', 'facet')
    top = domain.create_region('Top', 'vertex 2', 'vertex')

    field = Field.from_args('fu',
                            nm.float64,
                            'vector',
                            omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    D = stiffness_from_youngpoisson(2, options.young, options.poisson)

    asphalt = Material('Asphalt', D=D)
    load = Material('Load', values={'.val': [0.0, options.load]})

    integral = Integral('i', order=2 * options.order)
    integral0 = Integral('i', order=0)

    t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
                  integral,
                  omega,
                  Asphalt=asphalt,
                  v=v,
                  u=u)
    t2 = Term.new('dw_point_load(Load.val, v)', integral0, top, Load=load, v=v)
    eq = Equation('balance', t1 - t2)
    eqs = Equations([eq])

    xsym = EssentialBC('XSym', bottom, {'u.1': 0.0})
    ysym = EssentialBC('YSym', left, {'u.0': 0.0})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)

    pb.time_update(ebcs=Conditions([xsym, ysym]))

    # Solve the problem.
    state = pb.solve()
    output(nls_status)

    # Postprocess the solution.
    out = state.create_output_dict()
    out = stress_strain(out, pb, state, extend=True)
    pb.save_state('its2D_interactive.vtk', out=out)

    gdata = geometry_data['2_3']
    nc = len(gdata.coors)

    integral_vn = Integral('ivn',
                           coors=gdata.coors,
                           weights=[gdata.volume / nc] * nc)

    nodal_stress(out, pb, state, integrals=Integrals([integral_vn]))

    if options.probe:
        # Probe the solution.
        probes, labels = gen_lines(pb)

        sfield = Field.from_args('sym_tensor',
                                 nm.float64,
                                 3,
                                 omega,
                                 approx_order=options.order - 1)
        stress = FieldVariable('stress',
                               'parameter',
                               sfield,
                               primary_var_name='(set-to-None)')
        strain = FieldVariable('strain',
                               'parameter',
                               sfield,
                               primary_var_name='(set-to-None)')

        cfield = Field.from_args('component',
                                 nm.float64,
                                 1,
                                 omega,
                                 approx_order=options.order - 1)
        component = FieldVariable('component',
                                  'parameter',
                                  cfield,
                                  primary_var_name='(set-to-None)')

        ev = pb.evaluate
        order = 2 * (options.order - 1)
        strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp')
        stress_qp = ev('ev_cauchy_stress.%d.Omega(Asphalt.D, u)' % order,
                       mode='qp',
                       copy_materials=False)

        project_by_component(strain, strain_qp, component, order)
        project_by_component(stress, stress_qp, component, order)

        all_results = []
        for ii, probe in enumerate(probes):
            fig, results = probe_results(u, strain, stress, probe, labels[ii])

            fig.savefig('its2D_interactive_probe_%d.png' % ii)
            all_results.append(results)

        for ii, results in enumerate(all_results):
            output('probe %d:' % ii)
            output.level += 2
            for key, res in ordered_iteritems(results):
                output(key + ':')
                val = res[1]
                output('  min: %+.2e, mean: %+.2e, max: %+.2e' %
                       (val.min(), val.mean(), val.max()))
            output.level -= 2

    if options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer

        view = Viewer('its2D_interactive.vtk')
        view(vector_mode='warp_norm',
             rel_scaling=1,
             is_scalar_bar=True,
             is_wireframe=True)
Exemplo n.º 31
0
def main():
    parser = ArgumentParser(description=__doc__)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-b',
                        '--basis',
                        metavar='name',
                        action='store',
                        dest='basis',
                        default='lagrange',
                        help=helps['basis'])
    parser.add_argument('-n',
                        '--max-order',
                        metavar='order',
                        type=int,
                        action='store',
                        dest='max_order',
                        default=10,
                        help=helps['max_order'])
    parser.add_argument('-m',
                        '--matrix',
                        action='store',
                        dest='matrix_type',
                        choices=['laplace', 'elasticity', 'smass', 'vmass'],
                        default='laplace',
                        help=helps['matrix_type'])
    parser.add_argument('-g',
                        '--geometry',
                        metavar='name',
                        action='store',
                        dest='geometry',
                        default='2_4',
                        help=helps['geometry'])
    parser.add_argument('-o',
                        '--output-dir',
                        metavar='path',
                        action='store',
                        dest='output_dir',
                        default=None,
                        help=helps['output_dir'])
    parser.add_argument('--no-show',
                        action='store_false',
                        dest='show',
                        default=True,
                        help=helps['no_show'])
    options = parser.parse_args()

    dim, n_ep = int(options.geometry[0]), int(options.geometry[2])
    output('reference element geometry:')
    output('  dimension: %d, vertices: %d' % (dim, n_ep))

    n_c = {
        'laplace': 1,
        'elasticity': dim,
        'smass': 1,
        'vmass': dim
    }[options.matrix_type]

    output('matrix type:', options.matrix_type)
    output('number of variable components:', n_c)

    output('polynomial space:', options.basis)

    output('max. order:', options.max_order)

    mesh = Mesh.from_file(data_dir +
                          '/meshes/elements/%s_1.mesh' % options.geometry)
    domain = FEDomain('domain', mesh)
    omega = domain.create_region('Omega', 'all')

    orders = nm.arange(1, options.max_order + 1, dtype=nm.int32)
    conds = []

    for order in orders:
        output('order:', order, '...')

        field = Field.from_args('fu',
                                nm.float64,
                                n_c,
                                omega,
                                approx_order=order,
                                space='H1',
                                poly_space_base=options.basis)

        quad_order = 2 * field.approx_order
        output('quadrature order:', quad_order)

        integral = Integral('i', order=quad_order)
        qp, _ = integral.get_qp(options.geometry)
        output('number of quadrature points:', qp.shape[0])

        u = FieldVariable('u', 'unknown', field)
        v = FieldVariable('v', 'test', field, primary_var_name='u')

        m = Material('m', D=stiffness_from_lame(dim, 1.0, 1.0))

        if options.matrix_type == 'laplace':
            term = Term.new('dw_laplace(v, u)', integral, omega, v=v, u=u)
            n_zero = 1

        elif options.matrix_type == 'elasticity':
            term = Term.new('dw_lin_elastic(m.D, v, u)',
                            integral,
                            omega,
                            m=m,
                            v=v,
                            u=u)
            n_zero = (dim + 1) * dim // 2

        elif options.matrix_type in ('smass', 'vmass'):
            term = Term.new('dw_dot(v, u)', integral, omega, v=v, u=u)
            n_zero = 0

        term.setup()

        output('assembling...')
        timer = Timer(start=True)
        mtx, iels = term.evaluate(mode='weak', diff_var='u')
        output('...done in %.2f s' % timer.stop())
        mtx = mtx[0, 0]

        try:
            assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10)

        except:
            from sfepy.base.base import debug
            debug()

        output('matrix shape:', mtx.shape)

        eigs = eig(mtx, method='eig.sgscipy', eigenvectors=False)
        eigs.sort()

        # Zero 'true' zeros.
        eigs[:n_zero] = 0.0

        ii = nm.where(eigs < 0.0)[0]
        if len(ii):
            output('matrix is not positive semi-definite!')

        ii = nm.where(eigs[n_zero:] < 1e-12)[0]
        if len(ii):
            output('matrix has more than %d zero eigenvalues!' % n_zero)

        output('smallest eigs:\n', eigs[:10])

        ii = nm.where(eigs > 0.0)[0]
        emin, emax = eigs[ii[[0, -1]]]

        output('min:', emin, 'max:', emax)

        cond = emax / emin
        conds.append(cond)

        output('condition number:', cond)

        output('...done')

    if options.output_dir is not None:
        indir = partial(op.join, options.output_dir)

    else:
        indir = None

    plt.rcParams['font.size'] = 12
    plt.rcParams['lines.linewidth'] = 3

    fig, ax = plt.subplots()
    ax.semilogy(orders, conds)
    ax.set_xticks(orders)
    ax.set_xticklabels(orders)
    ax.set_xlabel('polynomial order')
    ax.set_ylabel('condition number')
    ax.set_title(f'{options.basis.capitalize()} basis')
    ax.grid()
    plt.tight_layout()
    if indir is not None:
        fig.savefig(indir(f'{options.basis}-{options.matrix_type}-'
                          f'{options.geometry}-{options.max_order}-xlin.png'),
                    bbox_inches='tight')

    fig, ax = plt.subplots()
    ax.loglog(orders, conds)
    ax.set_xticks(orders)
    ax.set_xticklabels(orders)
    ax.set_xlabel('polynomial order')
    ax.set_ylabel('condition number')
    ax.set_title(f'{options.basis.capitalize()} basis')
    ax.grid()
    plt.tight_layout()
    if indir is not None:
        fig.savefig(indir(f'{options.basis}-{options.matrix_type}-'
                          f'{options.geometry}-{options.max_order}-xlog.png'),
                    bbox_inches='tight')

    if options.show:
        plt.show()
Exemplo n.º 32
0
def main(argv):
    if argv is None:
        argv = sys.argv[1:]
    args = parser.parse_args(argv)

    # vvvvvvvvvvvvvvvv #
    approx_order = 2
    # ^^^^^^^^^^^^^^^^ #

    # Setup output names
    outputs_folder = "../outputs"

    domain_name = "domain_1D"
    problem_name = "iburgers_1D"
    output_folder = pjoin(outputs_folder, problem_name, str(approx_order))
    output_format = "vtk"
    save_timestn = 100
    clear_folder(pjoin(output_folder, "*." + output_format))
    configure_output({
        'output_screen':
        True,
        'output_log_name':
        pjoin(output_folder, f"last_run_{problem_name}_{approx_order}.txt")
    })

    # ------------
    # | Get mesh |
    # ------------
    X1 = 0.
    XN = 1.
    n_nod = 100
    n_el = n_nod - 1
    mesh = get_gen_1D_mesh_hook(X1, XN, n_nod).read(None)

    # -----------------------------
    # | Create problem components |
    # -----------------------------

    integral = Integral('i', order=approx_order * 2)
    domain = FEDomain(domain_name, mesh)
    omega = domain.create_region('Omega', 'all')
    left = domain.create_region('Gamma1', 'vertices in x == %.10f' % X1,
                                'vertex')
    right = domain.create_region('Gamma2', 'vertices in x == %.10f' % XN,
                                 'vertex')
    field = DGField('dgfu',
                    nm.float64,
                    'scalar',
                    omega,
                    approx_order=approx_order)

    u = FieldVariable('u', 'unknown', field, history=1)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    MassT = DotProductVolumeTerm("adv_vol(v, u)",
                                 "v, u",
                                 integral,
                                 omega,
                                 u=u,
                                 v=v)

    velo = nm.array(1.0)

    def adv_fun(u):
        vu = velo.T * u[..., None]
        return vu

    def adv_fun_d(u):
        v1 = velo.T * nm.ones(u.shape + (1, ))
        return v1

    burg_velo = velo.T / nm.linalg.norm(velo)

    def burg_fun(u):
        vu = burg_velo * u[..., None]**2
        return vu

    def burg_fun_d(u):
        v1 = 2 * burg_velo * u[..., None]
        return v1

    StiffT = NonlinearScalarDotGradTerm("burgers_stiff(f, df, u, v)",
                                        "fun , fun_d, u[-1], v",
                                        integral,
                                        omega,
                                        u=u,
                                        v=v,
                                        fun=burg_fun,
                                        fun_d=burg_fun_d)

    alpha = Material('alpha', val=[.0])
    # FluxT = AdvectDGFluxTerm("adv_lf_flux(a.val, v, u)", "a.val, v,  u[-1]",
    #                          integral, omega, u=u, v=v, a=a, alpha=alpha)

    FluxT = NonlinearHyperbolicDGFluxTerm("burgers_lf_flux(f, df, u, v)",
                                          "fun , fun_d, v, u[-1]",
                                          integral,
                                          omega,
                                          u=u,
                                          v=v,
                                          fun=burg_fun,
                                          fun_d=burg_fun_d)

    eq = Equation('balance', MassT - StiffT + FluxT)
    eqs = Equations([eq])

    # ------------------------------
    # | Create boundary conditions |
    # ------------------------------
    left_fix_u = EssentialBC('left_fix_u', left, {'u.all': 1.0})
    right_fix_u = EssentialBC('right_fix_u', right, {'u.all': 0.0})

    # ----------------------------
    # | Create initial condition |
    # ----------------------------
    def ghump(x):
        """
        Nice gaussian.
        """
        return nm.exp(-200 * x**2)

    def ic_wrap(x, ic=None):
        return ghump(x - .3)

    ic_fun = Function('ic_fun', ic_wrap)
    ics = InitialCondition('ic', omega, {'u.0': ic_fun})

    # ------------------
    # | Create problem |
    # ------------------
    pb = Problem(problem_name,
                 equations=eqs,
                 conf=Struct(options={"save_times": save_timestn},
                             ics={},
                             ebcs={},
                             epbcs={},
                             lcbcs={},
                             materials={}),
                 active_only=False)
    pb.setup_output(output_dir=output_folder, output_format=output_format)
    pb.set_ics(Conditions([ics]))

    # ------------------
    # | Create limiter |
    # ------------------
    limiter = MomentLimiter1D

    # ---------------------------
    # | Set time discretization |
    # ---------------------------
    CFL = .2
    max_velo = nm.max(nm.abs(velo))
    t0 = 0
    t1 = .2
    dx = nm.min(mesh.cmesh.get_volumes(1))
    dt = dx / max_velo * CFL / (2 * approx_order + 1)
    tn = int(nm.ceil((t1 - t0) / dt))
    dtdx = dt / dx

    # ------------------
    # | Create solver |
    # ------------------
    ls = ScipyDirect({})
    nls_status = IndexedStruct()
    nls = Newton({'is_linear': True}, lin_solver=ls, status=nls_status)

    tss_conf = {
        't0': t0,
        't1': t1,
        'n_step': tn,
        'limiters': {
            "dgfu": limiter
        }
    }

    tss = TVDRK3StepSolver(tss_conf, nls=nls, context=pb, verbose=True)

    # ---------
    # | Solve |
    # ---------
    pb.set_solver(tss)
    state_end = pb.solve()

    output("Solved equation \n\n\t\t u_t - div(f(u))) = 0\n")
    output(f"With IC: {ic_fun.name}")
    # output("and EBCs: {}".format(pb.ebcs.names))
    # output("and EPBCS: {}".format(pb.epbcs.names))
    output("-------------------------------------")
    output(f"Approximation order is {approx_order}")
    output(f"Space divided into {mesh.n_el} cells, " +
           f"{len(mesh.coors)} steps, step size is {dx}")
    output(f"Time divided into {tn - 1} nodes, {tn} steps, step size is {dt}")
    output(f"CFL coefficient was {CFL} and " +
           f"order correction {1 / (2 * approx_order + 1)}")
    output(f"Courant number c = max(abs(u)) * dt/dx = {max_velo * dtdx}")
    output("------------------------------------------")
    output(f"Time stepping solver is {tss.name}")
    output(f"Limiter used: {limiter.name}")
    output("======================================")

    # ----------
    # | Plot 1D|
    # ----------
    load_and_plot_fun(output_folder, domain_name, t0, t1,
                      min(tn, save_timestn), ic_fun)
def main(cli_args):
    dims = parse_argument_list(cli_args.dims, float)
    shape = parse_argument_list(cli_args.shape, int)
    centre = parse_argument_list(cli_args.centre, float)
    material_parameters = parse_argument_list(cli_args.material_parameters,
                                              float)
    order = cli_args.order

    ts_vals = cli_args.ts.split(',')
    ts = {
        't0': float(ts_vals[0]),
        't1': float(ts_vals[1]),
        'n_step': int(ts_vals[2])
    }

    do_plot = cli_args.plot

    ### Mesh and regions ###
    mesh = gen_block_mesh(dims, shape, centre, name='block', verbose=False)
    domain = FEDomain('domain', mesh)

    omega = domain.create_region('Omega', 'all')

    lbn, rtf = domain.get_mesh_bounding_box()
    box_regions = define_box_regions(3, lbn, rtf)
    regions = dict(
        [[r, domain.create_region(r, box_regions[r][0], box_regions[r][1])]
         for r in box_regions])

    ### Fields ###
    scalar_field = Field.from_args('fu',
                                   np.float64,
                                   'scalar',
                                   omega,
                                   approx_order=order - 1)
    vector_field = Field.from_args('fv',
                                   np.float64,
                                   'vector',
                                   omega,
                                   approx_order=order)

    u = FieldVariable('u', 'unknown', vector_field, history=1)
    v = FieldVariable('v', 'test', vector_field, primary_var_name='u')
    p = FieldVariable('p', 'unknown', scalar_field, history=1)
    q = FieldVariable('q', 'test', scalar_field, primary_var_name='p')

    ### Material ###
    c10, c01 = material_parameters
    m = Material(
        'm',
        mu=2 * c10,
        kappa=2 * c01,
    )

    ### Boundary conditions ###
    x_sym = EssentialBC('x_sym', regions['Left'], {'u.0': 0.0})
    y_sym = EssentialBC('y_sym', regions['Near'], {'u.1': 0.0})
    z_sym = EssentialBC('z_sym', regions['Bottom'], {'u.2': 0.0})
    disp_fun = Function('disp_fun', get_displacement)
    displacement = EssentialBC('displacement', regions['Right'],
                               {'u.0': disp_fun})
    ebcs = Conditions([x_sym, y_sym, z_sym, displacement])

    ### Terms and equations ###
    integral = Integral('i', order=2 * order)

    term_neohook = Term.new('dw_tl_he_neohook(m.mu, v, u)',
                            integral,
                            omega,
                            m=m,
                            v=v,
                            u=u)
    term_mooney = Term.new('dw_tl_he_mooney_rivlin(m.kappa, v, u)',
                           integral,
                           omega,
                           m=m,
                           v=v,
                           u=u)
    term_pressure = Term.new('dw_tl_bulk_pressure(v, u, p)',
                             integral,
                             omega,
                             v=v,
                             u=u,
                             p=p)

    term_volume_change = Term.new('dw_tl_volume(q, u)',
                                  integral,
                                  omega,
                                  q=q,
                                  u=u,
                                  term_mode='volume')
    term_volume = Term.new('dw_volume_integrate(q)', integral, omega, q=q)

    eq_balance = Equation('balance',
                          term_neohook + term_mooney + term_pressure)
    eq_volume = Equation('volume', term_volume_change - term_volume)
    equations = Equations([eq_balance, eq_volume])

    ### Solvers ###
    ls = ScipyDirect({})
    nls_status = IndexedStruct()
    nls = Newton({'i_max': 5}, lin_solver=ls, status=nls_status)

    ### Problem ###
    pb = Problem('hyper', equations=equations)
    pb.set_bcs(ebcs=ebcs)
    pb.set_ics(ics=Conditions([]))
    tss = SimpleTimeSteppingSolver(ts, nls=nls, context=pb)
    pb.set_solver(tss)

    ### Solution ###
    axial_stress = []
    axial_displacement = []

    def stress_strain_fun(*args, **kwargs):
        return stress_strain(*args,
                             order=order,
                             global_stress=axial_stress,
                             global_displacement=axial_displacement,
                             **kwargs)

    pb.solve(save_results=True, post_process_hook=stress_strain_fun)

    if do_plot:
        plot_graphs(material_parameters,
                    axial_stress,
                    axial_displacement,
                    undeformed_length=dims[0])