Exemplo n.º 1
0
    def test_interpolation(self):
        from sfepy import data_dir
        from sfepy.discrete.fem import Mesh
        from sfepy.linalg import make_axis_rotation_matrix

        fname = in_dir(self.options.out_dir)

        meshes = {
            'tp' : Mesh.from_file(data_dir + '/meshes/3d/block.mesh'),
            'si' : Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh'),
        }

        datas = gen_datas(meshes)

        for field_name in ['scalar_si', 'vector_si', 'scalar_tp', 'vector_tp']:
            m1 = meshes[field_name[-2:]]
            for ia, angle in enumerate(nm.linspace(0.0, nm.pi, 11)):
                self.report('%s: %d. angle: %f' % (field_name, ia, angle))
                shift = [0.0, 0.0, 0.0]
                mtx = make_axis_rotation_matrix([0, 1, 0], angle)

                m2 = m1.copy('rotated mesh')
                m2.transform_coors(mtx)

                data = datas[field_name]
                u1, u2 = do_interpolation(m2, m1, data, field_name)

                if ia == 0:
                    u1.save_as_mesh(fname('test_mesh_interp_%s_u1.vtk'
                                          % field_name))

                u2.save_as_mesh(fname('test_mesh_interp_%s_u2.%03d.vtk'
                                      % (field_name, ia)))

        return True
Exemplo n.º 2
0
def prepare_cylindrical_transform(coors, origin, mode='axes'):
    """
    Prepare matrices for transforming tensors into cylindrical coordinates with
    the axis 'z' in a given origin.

    Parameters
    ----------
    coors : array
        The Cartesian coordinates.
    origin : array of length 3
        The origin.
    mode : 'axes' or 'data'
        In 'axes' (default) mode the matrix transforms data to different
        coordinate system, while in 'data' mode the matrix transforms
        the data in the same coordinate system and is transpose of the
        matrix in the 'axes' mode.

    Returns
    -------
    mtx : array
        The array of transformation matrices for each coordinate in `coors`.
    """
    assert_(mode in ['axes', 'data'])

    x, y = coors[:,0] - origin[0], coors[:,1] - origin[1]
    theta = nm.arctan2(y, x)
    if mode == 'data':
        theta = -theta

    mtx = nm.zeros((coors.shape[0], 3, 3), dtype=nm.float64)
    for ii, th in enumerate(theta):
        mtx[ii] = make_axis_rotation_matrix([0.0, 0.0, 1.0], th)

    return mtx
Exemplo n.º 3
0
    def __init__(self, anchor, normal, bounds):
        Struct.__init__(self, anchor=nm.array(anchor, dtype=nm.float64),
                        bounds=nm.asarray(bounds, dtype=nm.float64))
        self.normal = nm.asarray(normal, dtype=nm.float64)

        norm = nm.linalg.norm
        self.normal /= norm(self.normal)

        e3 = [0.0, 0.0, 1.0]
        dd = nm.dot(e3, self.normal)
        rot_angle = nm.arccos(dd)

        if nm.abs(rot_angle) < 1e-14:
            mtx = nm.eye(3, dtype=nm.float64)
            bounds2d = self.bounds[:, :2]

        else:
            rot_axis = nm.cross([0.0, 0.0, 1.0], self.normal)
            mtx = la.make_axis_rotation_matrix(rot_axis, rot_angle)

            mm = la.insert_strided_axis(mtx, 0, self.bounds.shape[0])
            rbounds = la.dot_sequences(mm, self.bounds)
            bounds2d = rbounds[:, :2]

        assert_(nm.allclose(nm.dot(mtx, self.normal), e3,
                            rtol=0.0, atol=1e-12))

        self.adotn = nm.dot(self.anchor, self.normal)

        self.rot_angle = rot_angle
        self.mtx = mtx
        self.bounds2d = bounds2d
Exemplo n.º 4
0
def prepare_cylindrical_transform(coors, origin, mode='axes'):
    """
    Prepare matrices for transforming tensors into cylindrical coordinates with
    the axis 'z' in a given origin.

    Parameters
    ----------
    coors : array
        The Cartesian coordinates.
    origin : array of length 3
        The origin.
    mode : 'axes' or 'data'
        In 'axes' (default) mode the matrix transforms data to different
        coordinate system, while in 'data' mode the matrix transforms
        the data in the same coordinate system and is transpose of the
        matrix in the 'axes' mode.

    Returns
    -------
    mtx : array
        The array of transformation matrices for each coordinate in `coors`.
    """
    assert_(mode in ['axes', 'data'])

    x, y = coors[:, 0] - origin[0], coors[:, 1] - origin[1]
    theta = nm.arctan2(y, x)
    if mode == 'data':
        theta = -theta

    mtx = nm.zeros((coors.shape[0], 3, 3), dtype=nm.float64)
    for ii, th in enumerate(theta):
        mtx[ii] = make_axis_rotation_matrix([0.0, 0.0, 1.0], th)

    return mtx
Exemplo n.º 5
0
def prepare_cylindrical_transform(coors, origin):
    """
    Prepare matrices for transforming tensors into cylindrical coordinates with
    the axis 'z' in a given origin.

    Parameters
    ----------
    coors : array
        The Cartesian coordinates.
    origin : array of length 3
        The origin.

    Returns
    -------
    mtx : array
        The array of transformation matrices for each coordinate in `coors`.
    """
    x, y = coors[:,0] - origin[0], coors[:,1] - origin[1]
    theta = nm.arctan2(y, x)

    mtx = nm.zeros((coors.shape[0], 3, 3), dtype=nm.float64)
    for ii, th in enumerate(theta):
        mtx[ii] = make_axis_rotation_matrix([0.0, 0.0, 1.0], th)

    return mtx
Exemplo n.º 6
0
    def get_points(self, refine_flag=None):
        """
        Get the probe points.

        Returns
        -------
        pars : array_like
           The independent coordinate of the probe.
        points : array_like
           The probe points, parametrized by pars.
        """
        # Vector of angles.
        if self.is_refined:
            return self.pars, self.points

        if refine_flag is None:
            pars = nm.linspace(0.0, 2.0 * nm.pi, self.n_point + 1)[:-1]

        else:
            pars = Probe.refine_pars(self.pars,
                                     refine_flag,
                                     cyclic_val=2.0 * nm.pi)

            self.n_point = pars.shape[0]

        self.pars = pars

        # Create the points in xy plane, centered at the origin.
        x = self.radius * nm.cos(pars[:, None])
        y = self.radius * nm.sin(pars[:, None])

        if len(self.centre) == 3:
            z = nm.zeros((self.n_point, 1), dtype=nm.float64)
            points = nm.c_[x, y, z]

            # Rotate to satisfy the normal, shift to the centre.
            n1 = nm.array([0.0, 0.0, 1.0], dtype=nm.float64)
            axis = nm.cross(n1, self.normal)
            angle = nm.arccos(nm.dot(n1, self.normal))

            if nla.norm(axis) < 0.1:
                # n1 == self.normal
                rot_mtx = nm.eye(3, dtype=nm.float64)
            else:
                rot_mtx = make_axis_rotation_matrix(axis, angle)

            points = nm.dot(points, rot_mtx)

        else:
            points = nm.c_[x, y]

        points += self.centre

        self.points = points

        return pars, points
Exemplo n.º 7
0
    def get_points(self, refine_flag=None):
        """
        Get the probe points.

        Returns
        -------
        pars : array_like
           The independent coordinate of the probe.
        points : array_like
           The probe points, parametrized by pars.
        """
        # Vector of angles.
        if self.is_refined:
            return self.pars, self.points

        if refine_flag is None:
            pars = nm.linspace(0.0, 2.0*nm.pi, self.n_point + 1)[:-1]

        else:
            pars = Probe.refine_pars(self.pars, refine_flag,
                                     cyclic_val=2.0 * nm.pi)

            self.n_point = pars.shape[0]

        self.pars = pars

        # Create the points in xy plane, centered at the origin.
        x = self.radius * nm.cos(pars[:,None])
        y = self.radius * nm.sin(pars[:,None])

        if self.mesh.dim == 3:
            z = nm.zeros((self.n_point, 1), dtype=nm.float64)
            points = nm.c_[x, y, z]

            # Rotate to satisfy the normal, shift to the centre.
            n1 = nm.array([0.0, 0.0, 1.0], dtype=nm.float64)
            axis = nm.cross(n1, self.normal)
            angle = nm.arccos(nm.dot(n1, self.normal))

            if nla.norm(axis) < 0.1:
                # n1 == self.normal
                rot_mtx = nm.eye(3, dtype=nm.float64)
            else:
                rot_mtx = make_axis_rotation_matrix(axis, angle)

            points = nm.dot(points, rot_mtx)

        else:
            points = nm.c_[x, y]
    
        points += self.centre

        self.points = points

        return pars, points
def make_mesh(dims, shape, transform=None):
    """
    Generate a 2D rectangle mesh in 3D space, and optionally apply a coordinate
    transform.
    """
    _mesh = gen_block_mesh(dims, shape, [0, 0], name='shell10x', verbose=False)

    coors = nm.c_[_mesh.coors, nm.zeros(_mesh.n_nod, dtype=nm.float64)]
    coors = nm.ascontiguousarray(coors)

    conns = [_mesh.get_conn(_mesh.descs[0])]

    mesh = Mesh.from_data(_mesh.name, coors, _mesh.cmesh.vertex_groups, conns,
                          [_mesh.cmesh.cell_groups], _mesh.descs)

    if transform == 'bend':
        bbox = mesh.get_bounding_box()
        x0, x1 = bbox[:, 0]

        angles = 0.5 *  nm.pi * (coors[:, 0] - x0) / (x1 - x0)
        mtx = make_axis_rotation_matrix([0, -1, 0], angles[:, None, None])

        coors = mesh.coors.copy()
        coors[:, 0] = 0
        coors[:, 2] = (x1 - x0)

        mesh.coors[:] = transform_data(coors, mtx=mtx)
        mesh.coors[:, 0] -= 0.5 * (x1 - x0)

    elif transform == 'twist':
        bbox = mesh.get_bounding_box()
        x0, x1 = bbox[:, 0]

        angles = 0.5 *  nm.pi * (coors[:, 0] - x0) / (x1 - x0)
        mtx = make_axis_rotation_matrix([-1, 0, 0], angles[:, None, None])

        mesh.coors[:] = transform_data(mesh.coors, mtx=mtx)

    return mesh
def make_mesh(dims, shape, transform=None):
    """
    Generate a 2D rectangle mesh in 3D space, and optionally apply a coordinate
    transform.
    """
    _mesh = gen_block_mesh(dims, shape, [0, 0], name='shell10x', verbose=False)

    coors = nm.c_[_mesh.coors, nm.zeros(_mesh.n_nod, dtype=nm.float64)]
    coors = nm.ascontiguousarray(coors)

    conns = [_mesh.get_conn(_mesh.descs[0])]

    mesh = Mesh.from_data(_mesh.name, coors, _mesh.cmesh.vertex_groups, conns,
                          [_mesh.cmesh.cell_groups], _mesh.descs)

    if transform == 'bend':
        bbox = mesh.get_bounding_box()
        x0, x1 = bbox[:, 0]

        angles = 0.5 *  nm.pi * (coors[:, 0] - x0) / (x1 - x0)
        mtx = make_axis_rotation_matrix([0, -1, 0], angles[:, None, None])

        coors = mesh.coors.copy()
        coors[:, 0] = 0
        coors[:, 2] = (x1 - x0)

        mesh.coors[:] = transform_data(coors, mtx=mtx)
        mesh.coors[:, 0] -= 0.5 * (x1 - x0)

    elif transform == 'twist':
        bbox = mesh.get_bounding_box()
        x0, x1 = bbox[:, 0]

        angles = 0.5 *  nm.pi * (coors[:, 0] - x0) / (x1 - x0)
        mtx = make_axis_rotation_matrix([-1, 0, 0], angles[:, None, None])

        mesh.coors[:] = transform_data(mesh.coors, mtx=mtx)

    return mesh
Exemplo n.º 10
0
    def test_interpolation(self):
        from sfepy import data_dir
        from sfepy.fem import Mesh
        from sfepy.linalg import make_axis_rotation_matrix

        fname = in_dir(self.options.out_dir)

        meshes = {
            'tp' : Mesh('original mesh', data_dir + '/meshes/3d/block.mesh'),
            'si' : Mesh('original mesh', data_dir + '/meshes/3d/cylinder.mesh'),
        }

        datas = {}

        for key, mesh in meshes.iteritems():
            bbox = mesh.get_bounding_box()
            nx = bbox[1,0] - bbox[0,0]
            centre = 0.5 * bbox.sum(axis=0)
            mesh.coors -= centre
            
            data = nm.sin(4.0 * nm.pi * mesh.coors[:,0:1] / nx)
            datas['scalar_' + key] = data

            data = nm.zeros_like(mesh.coors)
            data[:,0] = 0.05 * nx * nm.sin(4.0 * nm.pi * mesh.coors[:,0] / nx)
            data[:,2] = 0.05 * nx * nm.cos(4.0 * nm.pi * mesh.coors[:,0] / nx)
            datas['vector_' + key] = data

        for field_name in ['scalar_si', 'vector_si', 'scalar_tp', 'vector_tp']:
            m1 = meshes[field_name[-2:]]

            for ia, angle in enumerate(nm.linspace(0.0, nm.pi, 11)):
                self.report('%s: %d. angle: %f' % (field_name, ia, angle))
                shift = [0.0, 0.0, 0.0]
                mtx = make_axis_rotation_matrix([0, 1, 0], angle)

                m2 = m1.copy('rotated mesh')
                m2.transform_coors(mtx)

                data = datas[field_name]
                u1, u2 = do_interpolation(m2, m1, data, field_name)

                if ia == 0:
                    u1.save_as_mesh(fname('test_mesh_interp_%s_u1.vtk'
                                          % field_name))

                u2.save_as_mesh(fname('test_mesh_interp_%s_u2.%03d.vtk'
                                      % (field_name, ia)))
       
        return True
Exemplo n.º 11
0
    def add_circle_probe(self, name, centre, normal, radius, n_point):
        """
        Create the ray (line) probe - VTK object.

        Parameters
        ----------
        name : str
            The probe name.
        centre : array
            The coordinates of the circle center point.
        normal : array
             The normal vector perpendicular to the circle plane.
        radius : float
            The radius of the circle.
        n_point : int
           The number of probe points.
        """

        pars = nm.linspace(0.0, 2.0*nm.pi, n_point + 1)[:-1]

        # Create the points in xy plane, centered at the origin.
        x = radius * nm.cos(pars[:,None])
        y = radius * nm.sin(pars[:,None])

        if len(centre) == 3:
            z = nm.zeros((n_point, 1), dtype=nm.float64)
            points = nm.c_[x, y, z]

            # Rotate to satisfy the normal, shift to the centre.
            n1 = nm.array([0.0, 0.0, 1.0], dtype=nm.float64)
            axis = nm.cross(n1, normal)
            angle = nm.arccos(nm.dot(n1, normal))

            if nm.linalg.norm(axis) < 0.1:
                # n1 == self.normal
                rot_mtx = nm.eye(3, dtype=nm.float64)
            else:
                rot_mtx = make_axis_rotation_matrix(axis, angle)

            points = nm.dot(points, rot_mtx)

        else:
            points = nm.c_[x, y]

        points += centre

        circle = self.new_vtk_polyline(points, closed=True)
        self.probes[name] = (circle, pars)
        self.probes_png[name] = False
Exemplo n.º 12
0
    def add_circle_probe(self, name, centre, normal, radius, n_point):
        """
        Create the ray (line) probe - VTK object.

        Parameters
        ----------
        name : str
            The probe name.
        centre : array
            The coordinates of the circle center point.
        normal : array
             The normal vector perpendicular to the circle plane.
        radius : float
            The radius of the circle.
        n_point : int
           The number of probe points.
        """

        pars = nm.linspace(0.0, 2.0*nm.pi, n_point + 1)[:-1]

        # Create the points in xy plane, centered at the origin.
        x = radius * nm.cos(pars[:,None])
        y = radius * nm.sin(pars[:,None])

        if len(centre) == 3:
            z = nm.zeros((n_point, 1), dtype=nm.float64)
            points = nm.c_[x, y, z]

            # Rotate to satisfy the normal, shift to the centre.
            n1 = nm.array([0.0, 0.0, 1.0], dtype=nm.float64)
            axis = nm.cross(n1, normal)
            angle = nm.arccos(nm.dot(n1, normal))

            if nm.linalg.norm(axis) < 0.1:
                # n1 == self.normal
                rot_mtx = nm.eye(3, dtype=nm.float64)
            else:
                rot_mtx = make_axis_rotation_matrix(axis, angle)

            points = nm.dot(points, rot_mtx)

        else:
            points = nm.c_[x, y]

        points += centre

        circle = self.new_vtk_polyline(points, closed=True)
        self.probes[name] = (circle, pars)
        self.probes_png[name] = False
Exemplo n.º 13
0
def plot_faces(ax, gel, radius, n_point, show=False):
    """
    Plot faces of a 3D geometry element as numbered oriented arcs. An arc
    centre corresponds to the first node of a face. It points from the first
    edge towards the last edge of the face.
    """
    dim = gel.dim
    ax = _get_axes(ax, dim)

    if dim < 3: return ax

    for ii, face in enumerate(gel.faces):
        cc = gel.coors[face]

        t1 = cc[1, :] - cc[0, :]
        t2 = cc[-1, :] - cc[0, :]
        n = nm.cross(t1, t2)

        nt1 = nm.linalg.norm(t1)
        nt2 = nm.linalg.norm(t2)
        angle = nm.arccos(nm.dot(t1, t2) / (nt1 * nt2))

        da = angle / (n_point - 1)

        mtx = make_axis_rotation_matrix(n, da)

        rt = cc[0] + radius * t1 / nt1
        coors = [rt]
        for ip in range(n_point - 1):
            rt = nm.dot(mtx.T, (rt - cc[0])) + cc[0]
            coors.append(rt)

        coors = nm.array(coors, dtype=nm.float64)
        centre = coors.sum(axis=0) / coors.shape[0]

        draw_arrow(ax, coors, length=0.3*radius, linewidth=3, color='r')

        if dim == 3:
            cx, cy, cz = centre
            ax.text(cx, cy, cz, ii,
                    color='r', fontsize=10, weight='light')

        else:
            cx, cy = centre
            ax.text(cx, cy, ii,
                    color='r', fontsize=10, weight='light')

    return ax
Exemplo n.º 14
0
def plot_faces(ax, gel, radius, n_point, show=False):
    """
    Plot faces of a 3D geometry element as numbered oriented arcs. An arc
    centre corresponds to the first node of a face. It points from the first
    edge towards the last edge of the face.
    """
    dim = gel.dim
    ax = _get_axes(ax, dim)

    if dim < 3: return ax

    for ii, face in enumerate(gel.faces):
        cc = gel.coors[face]

        t1 = cc[1, :] - cc[0, :]
        t2 = cc[-1, :] - cc[0, :]
        n = nm.cross(t1, t2)

        nt1 = nm.linalg.norm(t1)
        nt2 = nm.linalg.norm(t2)
        angle = nm.arccos(nm.dot(t1, t2) / (nt1 * nt2))

        da = angle / (n_point - 1)

        mtx = make_axis_rotation_matrix(n, da)

        rt = cc[0] + radius * t1 / nt1
        coors = [rt]
        for ip in range(n_point - 1):
            rt = nm.dot(mtx.T, (rt - cc[0])) + cc[0]
            coors.append(rt)

        coors = nm.array(coors, dtype=nm.float64)
        centre = coors.sum(axis=0) / coors.shape[0]

        draw_arrow(ax, coors, length=0.3 * radius, linewidth=3, color='r')

        if dim == 3:
            cx, cy, cz = centre
            ax.text(cx, cy, cz, ii, color='r', fontsize=10, weight='light')

        else:
            cx, cy = centre
            ax.text(cx, cy, ii, color='r', fontsize=10, weight='light')

    return ax