Exemplo n.º 1
0
def execute_report(
    working_dir: str,
    explainer: object,
    project_info_file: str,
    x_train: Optional[pd.DataFrame] = None,
    y_train: Optional[pd.DataFrame] = None,
    y_test: Optional[Union[pd.Series, pd.DataFrame]] = None,
    config: Optional[dict] = None,
    notebook_path: Optional[str] = None,
):
    """
    Executes the base_report.ipynb notebook and saves the results in working_dir.

    Parameters
    ----------
    working_dir : str
        Directory in which will be saved the executed notebook.
    explainer : shapash.explainer.smart_explainer.SmartExplainer object
        Compiled shapash explainer.
    project_info_file : str
        Path to the file used to display some information about the project in the report.
    x_train : pd.DataFrame
        DataFrame used for training the model.
    y_train : pd.Series or pd.DataFrame
        Series of labels in the training set.
    y_test : pd.Series or pd.DataFrame
        Series of labels in the test set.
    config : dict, optional
        Report configuration options.
    notebook_path : str, optional
        Path to the notebook used to generate the report. If None, the Shapash base report
        notebook will be used.
    """
    if config is None:
        config = {}
    explainer.save(path=os.path.join(working_dir, 'smart_explainer.pickle'))
    if x_train is not None:
        x_train.to_csv(os.path.join(working_dir, 'x_train.csv'))
    if y_train is not None:
        y_train.to_csv(os.path.join(working_dir, 'y_train.csv'))
    if y_test is not None:
        y_test.to_csv(os.path.join(working_dir, 'y_test.csv'))
    root_path = get_project_root()
    if notebook_path is None or notebook_path == '':
        notebook_path = os.path.join(root_path, 'shapash', 'report',
                                     'base_report.ipynb')

    pm.execute_notebook(notebook_path,
                        os.path.join(working_dir, 'base_report.ipynb'),
                        parameters=dict(dir_path=working_dir,
                                        project_info_file=project_info_file,
                                        config=config))
Exemplo n.º 2
0
def export_and_save_report(working_dir: str, output_file: str):
    """
    Exports a previously executed notebook and saves it as a static HTML file.

    Parameters
    ----------
    working_dir : str
        Path to the directory containing the executed notebook.
    output_file : str
        Path to the html file that will be created.
    """

    exporter = HTMLExporter(exclude_input=True,
                            extra_template_basedirs=[os.path.join(get_project_root(), 'shapash', 'report', 'template')],
                            template_name='custom', exclude_anchor_links=True)
    (body, resources) = exporter.from_filename(filename=os.path.join(working_dir, 'base_report.ipynb'))

    with open(output_file, "w") as file:
        file.write(body)
Exemplo n.º 3
0
from shapash.utils.transform import inverse_transform, apply_postprocessing
from shapash.explainer.smart_explainer import SmartExplainer
from shapash.utils.io import load_yml
from shapash.utils.utils import get_project_root, truncate_str
from shapash.report.visualisation import print_md, print_html, print_css_style, convert_fig_to_html, \
    print_javascript_misc
from shapash.report.data_analysis import perform_global_dataframe_analysis, perform_univariate_dataframe_analysis
from shapash.report.plots import generate_fig_univariate, generate_confusion_matrix_plot
from shapash.report.common import series_dtype, get_callable, compute_col_types, VarType, display_value
from shapash.webapp.utils.utils import round_to_k

logging.basicConfig(level=logging.INFO)

template_loader = jinja2.FileSystemLoader(
    searchpath=os.path.join(get_project_root(), 'shapash', 'report', 'html'))
template_env = jinja2.Environment(loader=template_loader)


class ProjectReport:
    """
    The ProjectReport class allows to generate general information about a
    Data Science project.
    It analyzes the data and the model used in order to provide interesting
    insights that can be shared with non technical person.

    Parameters
    ----------
    explainer : shapash.explainer.smart_explainer.SmartExplainer
        A shapash SmartExplainer object that has already be compiled.
    project_info_file : str