Exemplo n.º 1
0
def ring(lat, lon, R, r, proj, EC=2.5):
    """Creates a ring defined by two circles with radiuses r, R
    centered at x, y

    Args:
        lat, lon:   latitude and longitude
        R: outer radius of the ring in m
        r: inner radius of the ring in m
        proj. projection used
        EC: correction parameter
    """
    if R == r:
        return None

    # get projected coordinates
    (x, y) = proj(lon, lat)

    # error adjust rings
    error_r = EC * projections.proj_error(proj, [lat, lon], r, 0)
    error_R = EC * projections.proj_error(proj, [lat, lon], R, 0)

    r -= math.fabs(error_r)
    R += math.fabs(error_R)

    if R > r:
        outer_circle = Point(x, y).buffer(R)
        inner_circle = Point(x, y).buffer(r)
    else:
        outer_circle = Point(x, y).buffer(r)
        inner_circle = Point(x, y).buffer(R)

    ring = outer_circle.difference(inner_circle)

    return ring
Exemplo n.º 2
0
def ring(lat, lon, R, r, proj, EC=2.5):
    """Creates a ring defined by two circles with radiuses r, R
    centered at x, y

    Args:
        lat, lon:   latitude and longitude
        R: outer radius of the ring in m
        r: inner radius of the ring in m
        proj. projection used
        EC: correction parameter
    """
    if R == r:
        return None

    # get projected coordinates
    (x, y) = proj(lon, lat)

    # error adjust rings
    error_r = EC * projections.proj_error(proj, [lat, lon], r, 0)
    error_R = EC * projections.proj_error(proj, [lat, lon], R, 0)

    r -= math.fabs(error_r)
    R += math.fabs(error_R)

    if R > r:
        outer_circle = Point(x, y).buffer(R)
        inner_circle = Point(x, y).buffer(r)
    else:
        outer_circle = Point(x, y).buffer(r)
        inner_circle = Point(x, y).buffer(R)

    ring = outer_circle.difference(inner_circle)

    return ring
Exemplo n.º 3
0
def solve(f, R, t, r, g):
    # make the circle
    outerCircle = Point(0, 0).buffer(R, 1 << 12)
    # make the ring
    innerCircle = Point(0, 0).buffer(R - t - f, 1 << 12)
    # make the bars
    bars = []
    leftMin = -r - (2 * r + g) * (int(R / (2 * r + g)) + 1) 
    left = leftMin
    while left < R:
        bars.append(box(left, -R, left + 2 * r + 2 * f, R))
        left += 2 * r + g
    
    bottom = leftMin
    while bottom < R:
        bars.append(box(-R, bottom, R, bottom + 2 * r + 2 * f))
        bottom += 2 * r + g
        
    # get the union
    union = outerCircle.difference(innerCircle)
    for bar in bars:
        union = union.union(bar)
    # intersection with prev shape
    finalPattern = union.intersection(outerCircle)    
    # calc area ratio
    result = finalPattern.area / outerCircle.area
    return '%.6f' % result
Exemplo n.º 4
0
def ring(centerx, centery, radius, width):
    """
    a circular ring
    """
    c_out = Point(centerx, centery).buffer(radius)
    c_in = Point(centerx, centery).buffer(radius - width)
    return c_out.difference(c_in)
Exemplo n.º 5
0
def solve(f, R, t, r, g):
    # make the circle
    outerCircle = Point(0, 0).buffer(R, 1 << 12)
    # make the ring
    innerCircle = Point(0, 0).buffer(R - t - f, 1 << 12)
    # make the bars
    bars = []
    leftMin = -r - (2 * r + g) * (int(R / (2 * r + g)) + 1)
    left = leftMin
    while left < R:
        bars.append(box(left, -R, left + 2 * r + 2 * f, R))
        left += 2 * r + g

    bottom = leftMin
    while bottom < R:
        bars.append(box(-R, bottom, R, bottom + 2 * r + 2 * f))
        bottom += 2 * r + g

    # get the union
    union = outerCircle.difference(innerCircle)
    for bar in bars:
        union = union.union(bar)
    # intersection with prev shape
    finalPattern = union.intersection(outerCircle)
    # calc area ratio
    result = finalPattern.area / outerCircle.area
    return '%.6f' % result
Exemplo n.º 6
0
    def test_operations(self):
        point = Point(0.0, 0.0)

        # General geometry
        self.assertEqual(point.area, 0.0)
        self.assertEqual(point.length, 0.0)
        self.assertAlmostEqual(point.distance(Point(-1.0, -1.0)),
                               1.4142135623730951)

        # Topology operations

        # Envelope
        self.assertIsInstance(point.envelope, Point)

        # Intersection
        self.assertIsInstance(point.intersection(Point(-1, -1)),
                              GeometryCollection)

        # Buffer
        self.assertIsInstance(point.buffer(10.0), Polygon)
        self.assertIsInstance(point.buffer(10.0, 32), Polygon)

        # Simplify
        p = loads('POLYGON ((120 120, 121 121, 122 122, 220 120, 180 199, '
                  '160 200, 140 199, 120 120))')
        expected = loads('POLYGON ((120 120, 140 199, 160 200, 180 199, '
                         '220 120, 120 120))')
        s = p.simplify(10.0, preserve_topology=False)
        self.assertTrue(s.equals_exact(expected, 0.001))

        p = loads('POLYGON ((80 200, 240 200, 240 60, 80 60, 80 200),'
                  '(120 120, 220 120, 180 199, 160 200, 140 199, 120 120))')
        expected = loads(
            'POLYGON ((80 200, 240 200, 240 60, 80 60, 80 200),'
            '(120 120, 220 120, 180 199, 160 200, 140 199, 120 120))')
        s = p.simplify(10.0, preserve_topology=True)
        self.assertTrue(s.equals_exact(expected, 0.001))

        # Convex Hull
        self.assertIsInstance(point.convex_hull, Point)

        # Differences
        self.assertIsInstance(point.difference(Point(-1, 1)), Point)

        self.assertIsInstance(point.symmetric_difference(Point(-1, 1)),
                              MultiPoint)

        # Boundary
        self.assertIsInstance(point.boundary, GeometryCollection)

        # Union
        self.assertIsInstance(point.union(Point(-1, 1)), MultiPoint)

        self.assertIsInstance(point.representative_point(), Point)

        self.assertIsInstance(point.centroid, Point)

        # Relate
        self.assertEqual(point.relate(Point(-1, -1)), 'FF0FFF0F2')
Exemplo n.º 7
0
def generate(teeth_count=8,
             tooth_module=1.,
             pressure_angle=deg2rad(20.),
             backlash=0.,
             frame_count=16):

    pitch_radius = teeth_count * tooth_module / 2.
    pitch_circumference = pitch_radius * 2. * numpy.pi
    tooth_width = pitch_circumference / (2. * teeth_count)
    tooth_width += backlash
    addendum = tooth_width * (2 / numpy.pi)
    dedendum = addendum
    outer_radius = pitch_radius + addendum
    inner_radius = pitch_radius - dedendum
    # Tooth profile
    profile = numpy.array([
        [-(.5 * tooth_width + addendum * numpy.tan(pressure_angle)), addendum],
        [
            -(.5 * tooth_width - dedendum * numpy.tan(pressure_angle)),
            -dedendum
        ],
        [(.5 * tooth_width - dedendum * numpy.tan(pressure_angle)), -dedendum],
        [(.5 * tooth_width + addendum * numpy.tan(pressure_angle)), addendum]
    ])

    outer_circle = Point(0., 0.).buffer(outer_radius)

    poly_list = []
    prev_X = None
    l = 2 * tooth_width / pitch_radius
    for theta in numpy.linspace(0, l, frame_count):
        X = rotation(
            profile + numpy.array((-theta * pitch_radius, pitch_radius)),
            theta)
        if prev_X is not None:
            poly_list.append(
                MultiPoint([x for x in X] + [x for x in prev_X]).convex_hull)
        prev_X = X

    def circle_sector(angle, r):
        box_a = rotate(box(0., -2 * r, 2 * r, 2 * r), -angle / 2,
                       Point(0., 0.))
        box_b = rotate(box(-2 * r, -2 * r, 0, 2 * r), angle / 2, Point(0., 0.))
        return Point(0., 0.).buffer(r).difference(box_a.union(box_b))

    # Generate a tooth profile
    tooth_poly = cascaded_union(poly_list)
    tooth_poly = tooth_poly.union(scale(tooth_poly, -1, 1, 1, Point(0., 0.)))

    # Generate the full gear
    gear_poly = Point(0., 0.).buffer(outer_radius)
    for i in range(0, teeth_count):
        gear_poly = rotate(gear_poly.difference(tooth_poly),
                           (2 * numpy.pi) / teeth_count,
                           Point(0., 0.),
                           use_radians=True)

    # Job done
    return gear_poly, pitch_radius, outer_radius, inner_radius
Exemplo n.º 8
0
    def test_operations(self):
        point = Point(0.0, 0.0)

        # General geometry
        self.assertEqual(point.area, 0.0)
        self.assertEqual(point.length, 0.0)
        self.assertAlmostEqual(point.distance(Point(-1.0, -1.0)),
                               1.4142135623730951)

        # Topology operations

        # Envelope
        self.assertIsInstance(point.envelope, Point)

        # Intersection
        self.assertIsInstance(point.intersection(Point(-1, -1)),
                              GeometryCollection)

        # Buffer
        self.assertIsInstance(point.buffer(10.0), Polygon)
        self.assertIsInstance(point.buffer(10.0, 32), Polygon)

        # Simplify
        p = loads('POLYGON ((120 120, 121 121, 122 122, 220 120, 180 199, '
                  '160 200, 140 199, 120 120))')
        expected = loads('POLYGON ((120 120, 140 199, 160 200, 180 199, '
                         '220 120, 120 120))')
        s = p.simplify(10.0, preserve_topology=False)
        self.assertTrue(s.equals_exact(expected, 0.001))

        p = loads('POLYGON ((80 200, 240 200, 240 60, 80 60, 80 200),'
                  '(120 120, 220 120, 180 199, 160 200, 140 199, 120 120))')
        expected = loads(
            'POLYGON ((80 200, 240 200, 240 60, 80 60, 80 200),'
            '(120 120, 220 120, 180 199, 160 200, 140 199, 120 120))')
        s = p.simplify(10.0, preserve_topology=True)
        self.assertTrue(s.equals_exact(expected, 0.001))

        # Convex Hull
        self.assertIsInstance(point.convex_hull, Point)

        # Differences
        self.assertIsInstance(point.difference(Point(-1, 1)), Point)

        self.assertIsInstance(point.symmetric_difference(Point(-1, 1)),
                              MultiPoint)

        # Boundary
        self.assertIsInstance(point.boundary, GeometryCollection)

        # Union
        self.assertIsInstance(point.union(Point(-1, 1)), MultiPoint)

        self.assertIsInstance(point.representative_point(), Point)

        self.assertIsInstance(point.centroid, Point)

        # Relate
        self.assertEqual(point.relate(Point(-1, -1)), 'FF0FFF0F2')
def DifferPo(Rx, Ry, Radius):
    xpoly_Temp = Point(Rx, Ry).buffer(Radius)
    xpoly = xpoly_Temp.difference(po)
    DifferPoly = xpoly.difference(xpoly.difference(po.convex_hull))

    #    xpoly = Point(Rx,Ry).buffer(Radius)
    #    DifferPoly = xpoly.difference(po)
    #DifferPoly = xpoly.symmetric_difference(po)
    return DifferPoly
Exemplo n.º 10
0
def get_bounds(radius, max_offset):
    x_bound = 2 * radius
    y_max, y_min = 2 * radius, -(max_offset + radius)
    bounding_box = Polygon([(-x_bound, y_min), (x_bound, y_min),
                            (x_bound, y_max), (-x_bound, y_max)])
    center = (0, radius)
    bounding_circle = Point(*center).buffer(2 * radius + max_offset)
    outer_bound = Point(*center).buffer(GratingEllipse.max_radius)
    interior = bounding_box.intersection(bounding_circle)
    bounding_curve = outer_bound.difference(interior)
    return bounding_curve
Exemplo n.º 11
0
def new_rosace(Rint,Rext,N,surrounded=False):
    circle = Point(0,0).buffer(Rint)
    shape= circle
    for i in range(N):
        cosa = math.cos(i*2*math.pi/N)
        sina = math.sin(i*2*math.pi/N)
        circle2 = Point (Rint*cosa,Rint*sina).buffer(Rext)
        shape=shape.union(circle2)
    if surrounded:
        shapeout= Point(0,0).buffer((Rint+Rext)*1.01)
        shape=shapeout.difference(shape)
#    shape_in = shape.buffer(-Rext*0.1)
#    shape = shape.difference(shape_in)
    return shape
Exemplo n.º 12
0
def annulus(r_in, r_out):
    """ Create an annulus 
    
    Parameters
    ----------
    r_in, r_out : float
        inner and outer radius of annulus
    
    Returns
    -------
        Shapely Polygon object
        
    Example 
    -------
    >>> A = annulus(1,2)
    >>> A.area
    9.409645471637816
    """
    C1 = Point(0,0).buffer(r_in)
    C2 = Point(0,0).buffer(r_out)
    return C2.difference(C1)
Exemplo n.º 13
0
    def testMerger(self):
        # build chunks for the polygons
        tile_box = box(0, 0, 512, 256)  # a box having the same dimension as the tile
        circle = Point(600, 360)
        circle = circle.buffer(250)

        circle_part1 = tile_box.intersection(circle)
        circle_part2 = translate(tile_box, xoff=512).intersection(circle)
        circle_part3 = translate(tile_box, yoff=256).intersection(circle)
        circle_part4 = translate(tile_box, xoff=512, yoff=256).intersection(circle)
        circle_part5 = translate(tile_box, yoff=512).intersection(circle)
        circle_part6 = translate(tile_box, xoff=512, yoff=512).intersection(circle)

        # create topology
        fake_image = FakeImage(1024, 768, 3)
        fake_builder = FakeTileBuilder()
        topology = fake_image.tile_topology(fake_builder, 512, 256)

        tile1 = topology.tile(1)
        tile2 = topology.tile(2)
        tile3 = topology.tile(3)
        tile4 = topology.tile(4)
        tile5 = topology.tile(5)
        tile6 = topology.tile(6)

        tiles = [tile1.identifier, tile2.identifier, tile3.identifier, tile4.identifier, tile5.identifier, tile6.identifier]
        tile_polygons = [[circle_part1], [circle_part2], [circle_part3], [circle_part4], [circle_part5], [circle_part6]]

        polygons = SemanticMerger(5).merge(tiles, tile_polygons, topology)
        self.assertEqual(len(polygons), 1, "Number of found polygon")

        # use recall and false discovery rate to evaluate the error on the surface
        tpr = circle.difference(polygons[0]).area / circle.area
        fdr = polygons[0].difference(circle).area / polygons[0].area
        self.assertLessEqual(tpr, 0.002, "Recall is low for circle area")
        self.assertLessEqual(fdr, 0.002, "False discovery rate is low for circle area")
Exemplo n.º 14
0
def pcf2d(array_positions,
          bins_distances,
          coord_border=None,
          coord_holes=None,
          fast_method=False,
          show_timing=False,
          plot=False,
          full_output=False):
    r"""
    Computes the 2D radial distribution function (pair correlation function) 
    g(r) for a set of points, corrected to take account of the boundary effects.
    
    Parameters:
        
        - array_positions (numpy array, shape Nx2): 
            the (x,y) coordinates of N points.
                
        - bins_distances (numpy array, shape Mx1): 
            a monotonically increasing array of bin edges defining the values 
            of r for which g(r) is going to be computed.
        
    Optional parameters :
        
        - coord_border (numpy array, shape Lx2): 
            the (x,y) coordinates of L points, defining the boundary enclosing 
            the area of interest to compute the g(r).
            Points in array_positions that are outside the area of interest are 
            automatically excluded.
            !! The list of coordinates must be "valid" in the sense used by the
            shapely library: linking all the points in order should result in a
            simple polygon with no line intersecting each other. !!
            
            Ex: Assuming one wants a square border of area 1
                [[0,0],[0,1],[1,1],[1,0]] is valid (square shape)
                [[0,0],[0,1],[1,0],[1,1]] is not valid (bow tie shape)
                
            If no value is provided, the smallest convex Polygon containing all 
            the points in array_positions is computed using convex_hull. 
            (default value: None)
            
        - coord_holes (list of numpy arrays):
            a list of the (x,y) coordinates of points forming "holes" in the
            area of interest (useful if one is using a geometry with obstacles 
            or exclusion zones where no particles can be found).
            It is possible to define several holes (as long as they do not 
            intersect each other).
            
            Ex: Assuming the area of interest is a square and one wants to 
                to remove a smaller square at the center
                coord_border=[[0,0],[0,1],[1,1],[1,0]]
                coord_holes=[[[0.2,0.2],[0.2,0.8],[0.8,0.8],[0.8,0.2]]]
            
            If no value is provided, the area of intereste will be a simple
            polygon with no hole.
            (default value: None)
        
        - fast_method (bool):
            if True, all the points whose distance to the boundary is less than
            the longest distance in bins_distance are excluded from the g(r)
            computation, and only the points sufficiently far away from the 
            boundary are considered. This method is faster, but might exclude a
            lot of points.
            if False, the code computes for each point its distance to the 
            boundary, then computes a normalization factor for the points that 
            are too close to the boundary. This is the default method that 
            correctly takes account of all points, but might be time consuming.
            (default value: False)
            
        - show_timing (bool):
            if True, the code will print outputs showing timings at different
            stages of the computation (to let one know what operations are the
            most time consuming).
            (default value: False)

        - plot (bool): 
            if True, shows the points that were kept, and the computed g(r). 
            (default value: False).
            
        - full_output (bool):
            if True, the function also returns also "raw" distribution of 
            distances between the points PDF(r), the new array of coordinates 
            with only the points that were considered for computing g(r), the 
            distance of each point to the closest boundary of the area of 
            interest, the normalization factors, and the estimated density of 
            points in the area of interest.
            (default value: False). 
    
    Outputs:
    
        - g(r): a 1x(M-1) numpy array (where M is the length of bin_distances)
        - r: a 1x(M-1) numpy array (where M is the length of bin_distances)
    
    Optional output:
        
        - PDF(r): a 1x(M-1) numpy array
        - new_array_positions: a 2xN numpy array
        - distance_to_boundary: a 1xN numpy array
        - normalization_factor: a Nx(M-1) numpy array
        - estimated_density: a float
        
        (where N in the number of points in the area of interest and M is the 
         length of bin_distances)
    
    """

    if show_timing == True:
        t0 = time.time()

    if coord_border is None:
        positions_of_interest = MultiPoint(
            array_positions)  #all the points are considered
        area_of_interest = positions_of_interest.convex_hull  #the boundary is the convex_hull of all the points
    else:
        if coord_holes is None:
            area_of_interest = Polygon(
                shell=coord_border)  #definition of the boundary
        else:
            area_of_interest = Polygon(
                shell=coord_border,
                holes=coord_holes)  #definition of the boundary

        if not area_of_interest.is_valid:
            print(
                'The list of coordinates your provided for the border is not valid (see help for the definition of valid coord_border).'
            )
            return

        positions_of_interest = area_of_interest.intersection(
            MultiPoint(array_positions)
        )  #only the points inside the area of interest are considered
        array_positions = np.array(
            positions_of_interest
        )  #redefinition of "array_positions" with only the points inside the area of interest (time consuming operation)

    if show_timing == True:
        t1 = time.time() - t0
        print(
            'Creating boundary polygon and array of points inside took %f s' %
            t1)

    nb_part = len(array_positions)  #number of particles
    densite = nb_part / (area_of_interest.area)  #average density of particles
    border_area = area_of_interest.boundary  #the boundary (line) of the area of interest (polygon)

    rings = [[] for i in range(len(bins_distances) - 1)]
    ring_area = np.zeros(len(bins_distances) - 1)  #true ring areas
    ring_area_approx = np.zeros(
        len(bins_distances) -
        1)  #approximate ring areas (useful for normalization calculation)

    #For each distance bin, defines the ring (difference between the disk of radius r[jj+1] and the disk of radius r[jj])
    #and computes the area of those rings.
    for jj in range(len(bins_distances) - 1):

        inner_circle = Point([0, 0]).buffer(bins_distances[jj])
        outer_circle = Point([0, 0]).buffer(bins_distances[jj + 1])
        rings[jj] = outer_circle.difference(inner_circle)

        ring_area_approx[jj] = rings[jj].area
        ring_area[jj] = np.pi * (bins_distances[jj + 1]**2 -
                                 bins_distances[jj]**2)

    if show_timing == True:
        t2 = time.time() - t0
        print('Creating all ring polygons took %f s' % (t2 - t1))

    g_of_r = np.zeros(len(bins_distances) - 1)
    g_of_r_normalized = np.zeros(len(bins_distances) - 1)

    #For each point, computes its distance to the boundary, and for each bin computes the normalization factor
    #(the area of "the intersection of the ring and the area of interest", divided by the ring area)
    normalisation = np.ones(
        (nb_part, len(bins_distances) -
         1))  #normalization factors to take account of the boundaries
    dist_to_border = np.zeros(nb_part)

    if fast_method == True:

        for ii in range(nb_part):
            dist_to_border[ii] = positions_of_interest[ii].distance(
                border_area)  #distance of current point to boundary

        far_enough = np.where(dist_to_border > bins_distances[-1])[
            0]  #indexes of points far enough from the boundary
        array_positions = array_positions[
            far_enough, :]  #points too close to the boundary are excluded
        nb_part = len(array_positions)  #the new number of points

        if full_output == True:
            dist_to_border = dist_to_border[
                far_enough]  #points too close to the boundary are excluded
            normalisation = np.ones(
                (nb_part, len(bins_distances) -
                 1))  #just so that the matrix has the right size

    else:

        for ii in range(nb_part):
            dist_to_border[ii] = positions_of_interest[ii].distance(
                border_area)  #distance of point ii to boundary

            if dist_to_border[ii] <= bins_distances[
                    0]:  #special case the point is too close to the boundary for every r
                for jj in range(len(bins_distances) - 1):
                    normalisation[ii, jj] = (area_of_interest.intersection(
                        translate(rings[jj],
                                  xoff=positions_of_interest[ii].xy[0][0],
                                  yoff=positions_of_interest[ii].xy[1]
                                  [0])).area) / ring_area_approx[jj]
            else:
                for jj in (
                        np.where(bins_distances > dist_to_border[ii])[0] - 1
                ):  #the normalization factor needs only to be computed for a subset of r
                    normalisation[ii, jj] = (area_of_interest.intersection(
                        translate(rings[jj],
                                  xoff=positions_of_interest[ii].xy[0][0],
                                  yoff=positions_of_interest[ii].xy[1]
                                  [0])).area) / ring_area_approx[jj]

    if show_timing == True:
        t3 = time.time() - t0
        print('Computing normalization factors took %f s' % (t3 - t2))

    #For each point, computes the distance to others, then compute the g(r) by binning
    for ii in range(nb_part):
        #coordinates of the current point
        x_loc = array_positions[ii, 0]
        y_loc = array_positions[ii, 1]

        dist_to_loc = np.sqrt(
            (array_positions[:, 0] - x_loc)**2 +
            (array_positions[:, 1] - y_loc)**
            2)  #distance of the current point to each other point
        dist_to_loc[
            ii] = np.inf  #the distance from a point to itself is always zero (it is therefore excluded from the computation)

        g_of_r = g_of_r + np.histogram(dist_to_loc, bins=bins_distances)[
            0]  #computes the histogram of distances to the current point
        g_of_r_normalized = g_of_r_normalized + np.histogram(
            dist_to_loc, bins=bins_distances
        )[0] / (
            ring_area * normalisation[ii, :]
        )  #computes the histogram of distances to the current point normalized by the area of the intersection of the ring and the area of interest

    if show_timing == True:
        t4 = time.time() - t0
        print('Computing g(r) took %f s' % (t4 - t3))

    g_of_r = g_of_r / nb_part  #computes PDF(r)
    g_of_r_normalized = g_of_r_normalized / (nb_part * densite)  #computes g(r)

    radii = (bins_distances[1::] +
             bins_distances[0:-1]) / 2  #computes the values of "r"

    if plot == True:
        plt.figure()
        plt.scatter(array_positions[:, 0], array_positions[:, 1])
        plt.xlabel('x')
        plt.ylabel('y')
        plt.title('Points kept to compute g(r)')

        plt.figure()
        plt.plot(radii, g_of_r_normalized)
        plt.xlabel('r')
        plt.ylabel('g(r)')
        plt.title('Radial Distribution Function')

    if full_output == True:
        results = (g_of_r_normalized, radii, g_of_r, array_positions,
                   dist_to_border, normalisation, densite)
    else:
        results = (g_of_r_normalized, radii)

    if show_timing == True:
        t5 = time.time() - t0
        print('Total time: %f s for %i points ' % (t5, nb_part))

    return results
Exemplo n.º 15
0
# from pygiser import BLUE, GRAY, set_limits
from figures import SIZE, BLUE, GRAY, DARKGRAY, set_limits

fig = pyplot.figure(1, figsize=SIZE, dpi=90)

a = Point(1, 1).buffer(1.5)
b = Point(2, 1).buffer(1.5)

# 1
ax = fig.add_subplot(121)

patch1 = PolygonPatch(a, fc=GRAY, ec=GRAY, alpha=0.2, zorder=1)
ax.add_patch(patch1)
patch2 = PolygonPatch(b, fc=GRAY, ec=GRAY, alpha=0.2, zorder=1)
ax.add_patch(patch2)
c = a.difference(b)
patchc = PolygonPatch(c, fc=DARKGRAY, ec=DARKGRAY, alpha=0.5, zorder=2)
ax.add_patch(patchc)

ax.set_title('a.difference(b)')

set_limits(ax, -1, 4, -1, 3)

# 2
ax = fig.add_subplot(122)

patch1 = PolygonPatch(a, fc=GRAY, ec=GRAY, alpha=0.2, zorder=1)
ax.add_patch(patch1)
patch2 = PolygonPatch(b, fc=GRAY, ec=GRAY, alpha=0.2, zorder=1)
ax.add_patch(patch2)
c = b.difference(a)
Exemplo n.º 16
0
###############################################################################
from shapely.geometry import LineString, MultiLineString, Point
from pprint import pprint

coords = [((0, 0), (1, 1)), ((-1, 0), (1, 0))]
lines = MultiLineString(coords)
lines.boundary
lines.boundary.boundary
lines.boundary.boundary.is_empty
###############################################################################
LineString([(0, 0), (1, 1)]).centroid
LineString([(0, 0), (1, 1)]).centroid.wkt
###############################################################################
a = Point(1, 1).buffer(1.5)
b = Point(2, 1).buffer(1.5)
a.difference(b)
###############################################################################
a = Point(1, 1).buffer(1.5)
b = Point(2, 1).buffer(1.5)
a.intersection(b)
###############################################################################
a = Point(1, 1).buffer(1.5)
b = Point(2, 1).buffer(1.5)
a.symmetric_difference(b)
###############################################################################
a = Point(1, 1).buffer(1.5)
b = Point(2, 1).buffer(1.5)
a.union(b)
###############################################################################
a.union(b).boundary
a.boundary.union(b.boundary)
Exemplo n.º 17
0
##########################

#define some basic geometries

circle_small = Point((0.0, 0.0)).buffer(10.0)
circle_medium = Point((0.0, 0.0)).buffer(20.0)
circle_large = Point((0.0, 0.0)).buffer(30.0)

rectangle_small = Polygon(
    ((-10.0, -5.0), (-10.0, 5.0), (10.0, 5.0), (10.0, -5.0), (-10.0, -5.0)))
rectangle_medium = Polygon(
    ((-15.0, -7.5), (-15.0, 7.5), (15.0, 7.5), (15.0, -7.5), (-15.0, -7.5)))
rectangle_large = Polygon(((-20.0, -10.0), (-20.0, 10.0), (20.0, 10.0),
                           (20.0, -10.0), (-20.0, -10.0)))

ring_slim = circle_large.difference(circle_medium)
ring_thick = circle_large.difference(circle_small)

# place buildings across the domain
geoms = []

geoms.append(
    bld.building(ground=translate(circle_medium, xoff=175.0, yoff=185.0),
                 height=30.0,
                 id_bldg=len(geoms)))
geoms.append(
    bld.building(ground=translate(rectangle_large, xoff=155.0, yoff=145.0),
                 height=20.0,
                 id_bldg=len(geoms)))
geoms.append(
    bld.building(ground=rotate(
Exemplo n.º 18
0
BLUE = '#6699cc'
GRAY = '#999999'

fig = pyplot.figure(1, figsize=SIZE, dpi=90)

a = Point(1, 1).buffer(1.5)
b = Point(2, 1).buffer(1.5)

# 1
ax = fig.add_subplot(121)

patch1 = PolygonPatch(a, fc=GRAY, ec=GRAY, alpha=0.2, zorder=1)
ax.add_patch(patch1)
patch2 = PolygonPatch(b, fc=GRAY, ec=GRAY, alpha=0.2, zorder=1)
ax.add_patch(patch2)
c = a.difference(b)
patchc = PolygonPatch(c, fc=BLUE, ec=BLUE, alpha=0.5, zorder=2)
ax.add_patch(patchc)

ax.set_title('a.difference(b)')

xrange = [-1, 4]
yrange = [-1, 3]
ax.set_xlim(*xrange)
ax.set_xticks(range(*xrange) + [xrange[-1]])
ax.set_ylim(*yrange)
ax.set_yticks(range(*yrange) + [yrange[-1]])
ax.set_aspect(1)

#2
ax = fig.add_subplot(122)
Exemplo n.º 19
0
from shapely.geometry import MultiLineString
coords = [((0, 0), (1, 1)), ((-1, 0), (1, 0))]
lines = MultiLineString(coords)
lines.boundary.wkt
lines.boundary.boundary.wkt
lines.boundary.boundary.is_empty

################################################################################
from shapely.geometry import LineString
LineString([(0, 0), (1, 1)]).centroid.wkt

################################################################################
from shapely.geometry import Point
a = Point(1, 1).buffer(1.5)
b = Point(2, 1).buffer(1.5)
a.difference(b).wkt

################################################################################
a = Point(1, 1).buffer(1.5)
b = Point(2, 1).buffer(1.5)
a.intersection(b).wkt

################################################################################
a = Point(1, 1).buffer(1.5)
b = Point(2, 1).buffer(1.5)
a.symmetric_difference(b).wkt

################################################################################
a = Point(1, 1).buffer(1.5)
b = Point(2, 1).buffer(1.5)
a.union(b).wkt
Exemplo n.º 20
0
import cairocffi as cairo
from shapely.geometry import Point
import map.features.nature

circle = Point(50, 50).buffer(40, resolution=30)
bite = Point(20, 50).buffer(20)
hole = Point(60, 50).buffer(10)
circle = circle.difference(bite)
circle = circle.difference(hole)

surface = cairo.PDFSurface("output/map_features_nature_water.pdf", 100, 100)
ctx = cairo.Context(surface)

waterDrawer = map.features.nature.WaterDrawer()
waterDrawer.draw(ctx, [circle])

surface.flush()
surface.finish()
Exemplo n.º 21
0
def ring(Rext,Rint):
    shape_out= Point(0,0).buffer(Rext)
    shape_in = Point (0,0).buffer(Rint)
    return shape_out.difference(shape_in)
def plot_poly(poly, pen):
    plot_line(LineString(poly.exterior.coords), pen)
    for i in poly.interiors:
        plot_line(LineString(i.coords), pen)

# Drawing limits: (left 0; bottom 0; right 10300; top 7650)
#  = Letter paper on HP-7470A
# draw a nice page box
page = box(0, 0, 10300, 7650)
innerpage = scale(page, xfact=0.99, yfact=0.99, origin='center')
hatching = hatchbox(page, 45, 100)
# construct crescent
circle = Point(5000, 4000).buffer(3000)
pt = Point(3500, 4000)
circle1 = pt.buffer(2000)
crescent = circle.difference(circle1).simplify(10.0)
crescent_hatch = crescent.intersection(hatching)

# construct a box with a hole in it
weebox = box(8000, 5000, 9500, 7000)
weehatch = hatchbox(weebox, -45, 40)
tbox = scale(weebox, xfact=0.95, yfact=0.95, origin='center')
tinybox = scale(weebox, xfact=0.5, yfact=0.5, origin='center')
holey = tbox.difference(tinybox)
# add fine hatching
holey_hatch = holey.intersection(weehatch)

# plot stuff ..
print 'IN;'                               # cheapo init code
plot_poly(page, 1)                        # outer page border
plot_poly(innerpage, 2)                   # inner page border
Exemplo n.º 23
0
# -*- coding: utf-8 -*-
import os


from shapely.geometry import Point, LineString, LinearRing, Polygon,  MultiLineString

coords = [((0,0),(1,1)),((-1,0),(1,0))]
lines = MultiLineString(coords)
lines.boundary
print(list(lines.boundary))
lines.boundary.boundary.is_empty

LineString([(0,0),(1,1)]).centroid
LineString([(0,0),(1,1)]).centroid.wkt

a = Point(1,1).buffer(1.5)
b = Point(2,1).buffer(1.5)
a.difference(b)

a.intersection(b)

a.symmetric_difference(b)

a.union(b)

a.union(b).boundary
a.boundary.union(b.boundary)

def Test():
    assert True