def __init__(self, diameter, distance_between_pressure_taps, material): self.diameter = sd.sdfloat(diameter) if (distance_between_pressure_taps == 0.0): self.distance_between_pressure_taps = None else: self.distance_between_pressure_taps = distance_between_pressure_taps self.material = str(material)
series_number = 0 globals_filename = "../data/{:s}/globals.csv".format(study_identifier, ) with open(globals_filename, "r") as globals_file: globals_reader = csv.reader( globals_file, delimiter=",", quotechar='"', \ skipinitialspace=True, ) next(globals_reader) for globals_row in globals_reader: series_number += 1 # p. 107 width = sd.sdfloat(2.540e-2) development_length = sd.sdfloat(0.100e-2) distance_between_pressure_taps = sd.sdfloat(0.780e-2) # p. 107 # # Page 107 gives the height of the duct as approximately 0.025 cm, but # later gives a corrected value of the height to 0.0238 cm. Using this # corrected height moves friction factor onto the laminar curve. # Without the correction, the values are too high, likely due to the # development length being very short. # # Rather than accept the correction, instead calculate the uncertainty # of the depth measurements using the table on p. 95. height = sd.sdfloat(0.025e-2, height_uncertainty)
series_number = 0 globals_filename = "../data/{:s}/globals.csv".format(study_identifier, ) with open(globals_filename, "r") as globals_file: globals_reader = csv.reader( globals_file, delimiter=",", quotechar='"', \ skipinitialspace=True, ) next(globals_reader) for globals_row in globals_reader: series_number += 1 originators_identifier = str(globals_row[0]) prandtl_number = sd.sdfloat(globals_row[3], 0.0) heat_capacity_ratio = sd.sdfloat(globals_row[4], 0.0) specific_gas_constant = sd.sdfloat(globals_row[5], 0.0) omega = sd.sdfloat(globals_row[6], 0.0) nx = int(globals_row[7]) ny = int(globals_row[8]) nz = int(globals_row[9]) wall_temperature = sd.sdfloat(globals_row[10], 0.0) wall_dynamic_viscosity = sd.sdfloat(globals_row[12]) wall_shear_stress = sd.sdfloat(globals_row[13]) friction_velocity = sd.sdfloat(globals_row[18]) viscous_length_scale = sd.sdfloat(globals_row[19]) friction_temperature = sd.sdfloat(globals_row[20]) B_q = sd.sdfloat(globals_row[21]) wall_heat_flux = sd.sdfloat(globals_row[22]) friction_reynolds_number = sd.sdfloat(globals_row[23])
year=year, study_number=study_number, study_type=sd.EXPERIMENTAL_STUDY_TYPE, ) sd.add_source(cursor, study_identifier, "StantonTE+1911+eng+JOUR", 1) sd.add_source(cursor, study_identifier, "KooEC+1932+eng+THES", 2) globals_filename = "../data/{:s}/globals.csv".format(study_identifier) with open(globals_filename, "r") as globals_file: globals_reader = csv.reader( globals_file, delimiter=",", quotechar='"', \ skipinitialspace=True ) next(globals_reader) for globals_row in globals_reader: series_number = int(globals_row[0]) diameter = sd.sdfloat(globals_row[2]) * 1.0e-2 # p. 367 # # \begin{quote} # The arrangement of one of the experimental pipes and the air fan used # to set up the current is shown in fig. I. The air fan discharges into # a horizontal pipe 3.5 metres in length. This pipe is connected by a # bendto a vertical pipe 5.5 metres high. The experimental portion, 61 # cm. long, is at the upper extremity of the vertical pipe. # \end{quote} # # However, figure 1 remarks that the development section is 5.0 meters # in length. Assume that the development section is the # difference between the quoted measurements and that the precision of # the value in the figure is too low.
def __init__(self, aspect_ratio, length): self.aspect_ratio = sd.sdfloat(aspect_ratio) self.length = sd.sdfloat(length)
) with open(duct_globals_filename, "r") as duct_globals_file: duct_globals_reader = csv.reader( duct_globals_file, delimiter=",", quotechar='"', \ skipinitialspace=True, ) next(duct_globals_reader) for duct_globals_row in duct_globals_reader: series_number += 1 test_number = int(duct_globals_row[0]) originators_identifier = "{:s} duct {:d}".format(duct, test_number) temperature = sd.fahrenheit_to_kelvin( sd.sdfloat(duct_globals_row[2])) mass_density = sd.sdfloat( duct_globals_row[4] ) * sd.KILOGRAM_PER_POUND_MASS / sd.METERS_PER_FOOT**3.0 bulk_velocity = sd.sdfloat( duct_globals_row[5] ) * sd.METERS_PER_FOOT / sd.SECONDS_PER_MINUTE hydraulic_diameter = sd.sdfloat( duct_globals_row[6]) * sd.METERS_PER_INCH pressure_gradient = sd.sdfloat( duct_globals_row[7] ) * sd.PASCALS_PER_INCH_OF_WATER / sd.METERS_PER_FOOT Re_bulk_value = sd.sdfloat(duct_globals_row[10]) # Duct dimensions #
def outer_layer_development_length(self): return sd.sdfloat(90.0)
with open(ratio_filename, "r") as ratio_file: ratio_reader = csv.reader( ratio_file, delimiter=",", quotechar='"', \ skipinitialspace=True, ) next(ratio_reader) for ratio_row in ratio_reader: series_number += 1 # Series 49, the one with the bulk velocity of 115.5 cm/s, appears to # be a turbulent value at a laminar Reynolds number. outlier = True if series_number == 49 else False bulk_velocity = sd.sdfloat(ratio_row[0]) * 1.0e-2 maximum_velocity = sd.sdfloat(ratio_row[1]) * 1.0e-2 working_fluid = str(ratio_row[2]) pipe = str(ratio_row[3]) diameter = pipes[pipe].diameter distance_between_pressure_taps = pipes[ pipe].distance_between_pressure_taps development_length = pipes[pipe].development_length() outer_layer_development_length = pipes[ pipe].outer_layer_development_length() # The velocity ratio experiments do not give the test conditions like # the temperature. Graphical extraction from figure 1 reveals that the # kinematic viscosity used there is consistent with the value around # 15°C.
# p. 692 # # \begin{quote} # The width of the channel ($2 a$) was 1.178 cms., and the depth ($2 b$) was # 0.404 cm. The maximum variation from these average figures was less than 0.5 # per cent. in both cases. # \end{quote} # # Assume a uniform distribution. width_value = 1.178e-2 height_value = 0.404e-2 width_uncertainty = 0.005 * width_value / 3.0**0.5 height_uncertainty = 0.005 * height_value / 3.0**0.5 width = sd.sdfloat( width_value, width_uncertainty ) height = sd.sdfloat( height_value, height_uncertainty ) half_height = 0.5 * height aspect_ratio = width / height hydraulic_diameter = 2.0 * width * height / ( width + height ) cross_sectional_area = width * height wetted_perimeter = 2.0 * ( width + height ) # p. 692 # # \begin{quote} # The pressure differences were measured in three ways, according to the # magnitude--- # # \begin{enumerate}