Exemplo n.º 1
0
def test_apply_baddim(features_collection):
    feats = FeaturesCollection(
        {k: v.copy() for k, v in features_collection.items()})
    feats['new'] = Features(
        np.random.random((2, 1)), np.asarray([0, 1]))

    with pytest.raises(ValueError) as err:
        apply_cmvn(feats)
    assert 'must have consistent dimensions' in str(err.value)
Exemplo n.º 2
0
def test_apply_weights(features_collection):
    cmvn1 = apply_cmvn(features_collection)

    with pytest.raises(ValueError) as err:
        apply_cmvn(features_collection, weights={})
    assert 'keys differ for ' in str(err.value)

    weights = {k: None for k in features_collection.keys()}
    cmvn3 = apply_cmvn(features_collection, weights=weights)
    assert cmvn3 == cmvn1
Exemplo n.º 3
0
def test_apply_cmvn_skipdims(features_collection, skip_dims):
    if skip_dims in ([-1], [13]):
        with pytest.raises(ValueError) as err:
            apply_cmvn(features_collection, skip_dims=skip_dims)
        assert 'out of bounds dimensions' in str(err.value)
    else:
        cmvns = apply_cmvn(
            features_collection, skip_dims=skip_dims, by_collection=False)
        for feats in cmvns.values():
            assert feats.data[:, 2:].mean(axis=0) == pytest.approx(0, abs=1e-5)
            assert feats.data[:, 2:].var(axis=0) == pytest.approx(1, abs=1e-5)

            assert feats.data[:, :2].mean(axis=0) != pytest.approx(0, abs=1e-5)
            assert feats.data[:, :2].var(axis=0) != pytest.approx(1, abs=1e-5)
Exemplo n.º 4
0
def test_apply_cmvn_bycollection(features_collection):
    cmvns = apply_cmvn(features_collection, by_collection=True)
    cmvns = np.concatenate([f.data for f in cmvns.values()], axis=0)
    assert cmvns.shape == (
        sum(f.nframes for f in features_collection.values()),
        features_collection['0'].ndims)
    assert cmvns.mean(axis=0) == pytest.approx(0, abs=1e-5)
    assert cmvns.var(axis=0) == pytest.approx(1, abs=1e-5)
Exemplo n.º 5
0
def test_apply_cmvn_byfeatures(features_collection):
    cmvns = apply_cmvn(features_collection, by_collection=False)
    for feat in cmvns.values():
        assert feat.data.mean(axis=0) == pytest.approx(0, abs=1e-5)
        assert feat.data.var(axis=0) == pytest.approx(1, abs=1e-5)