Exemplo n.º 1
0
 def prepare(self, fluxes, bins):
     y = asarray(fluxes[:,0])
     self.flux = y
     self.modelvals = asarray(fluxes[:,1:])
     self.xlo, self.xhi = dataspace1d(y.min(), y.max(), numbins=bins+1)[:2]
     y = histogram1d(y, self.xlo, self.xhi)
     self.y = y/float(y.max())
Exemplo n.º 2
0
    def prepare(self, fluxes, bins):
        """Define the histogram plot.

        Parameters
        ----------
        fluxes : numpy array
            The data, stored in a niter by (npar + 2) matrix, where
            each row is an iteration, the first column is the flux for
            that row, the next npar columns are the parameter values,
            and the last column indicates whether the row was clipped
            (1) or not (0).
        bins : int
            The number of bins to split the flux data into.

        """

        fluxes = asarray(fluxes)
        y = fluxes[:, 0]
        self.flux = y
        self.modelvals = fluxes[:, 1:-1]
        self.clipped = fluxes[:, -1]
        self.xlo, self.xhi = dataspace1d(y.min(), y.max(),
                                         numbins=bins + 1)[:2]
        y = histogram1d(y, self.xlo, self.xhi)
        self.y = y / float(y.max())